
Attack-prone Components

Internal and External Metrics for Predicting
Attack-prone Components

Michael Gegick and Laurie Williams
North Carolina State University

7 April 2008

2

Failure-prone component
Likely to fail

(Reliability context) (Security context)

Attack-prone component
Likely to be exploited

Where Should Security Efforts Begin?

Fault-prone component
Likely to contain faults

Vulnerability-prone component
Likely to contain vulnerabilities

Failure- and attack-prone

• Execution context

• Execution of a fault is a failure.

• Usage

• Exploitation of a vulnerability is an
attack.

• Ease of attack and value of
asset (risk)

Fault- and vulnerability-prone

• Pre-execution context

• Some faults remain latent.

• Vulnerabilities can have a wide
range of severity and likelihood of
exploitation.

3

Research Outline
• Goal - identify where vulnerabilities most likely exist in a software system so

fortification efforts can focus on those problem areas first.

• Research objective – create/validate statistical models that identify good and early
predictors of security problems.

• Candidate predictors
– Churn
– Size (SLOC)
– FlexeLint static analysis tool alerts (audited and un-audited)

• All alerts
• Null pointers
• Memory leaks
• Buffer overflows

– Non-security failures (general reliability problems)

• Methodology - model values of the predictors and counts of security-based failure
reports for a given component in the software system.

• Not identify exploits or qualify the vulnerabilities.

4

Case Study

• Commercial telecommunications software system.

• 38 components
– 13 components left out 25 components in analysis
– Each component consists of multiple files

• 1.2 million lines of C/C++ source code (in the 25 components)

• Deployed to the field for two years

• 52 failure reports were classified as security-based problems
– Vendor’s security engineer verified our report

5

Attack-prone Components

• Pre-release attack-prone components (10)
– Pre-release robustness testing at system level

• Post-release attack-prone components (4)
– Customer-reported

• “attacks” – vulnerabilities that could have been exploited
» No attacks reported

• Attack-prone (not vulnerability-prone)
– Vulnerabilities were found during system execution

• All post-release attack-prone components are also pre-release attack-
prone

6

Correlations

Metric Security failure
count

Spearman rank
correlation
(p-value)

FlexeLint
alerts

Sum pre- and post-
release

0.39
(.06)

Churn Pre, post- or both No correlation

SLOC Post-release
0.43

(0.03)

Sum pre- and post-
release non-security
failure count

Sum pre- and post-
release

0.82
(< .0001)

7

Classification and Regression
Tree Analysis (CART)

8

Attack-prone Prediction Results
from CART

Metric Type I Type II R2 Cross-
validated

R2

ROC

alerts 7 (28%) 0% 31.5% 19.4% 76.7%
churn 7 (28%) 0% 32% 30% 77%
SLOC -- -- -- -- --
alerts,
churn,
SLOC

2 (8%) 0% 68% 61% 93%

total pre-
release
failure
count

2 (8%) 0% 68% 64% 93%

X
X

9

Non-security and Security Failure Counts

Non-security failures

S
ec

ur
ity

 fa
ilu

re
s

X post-release attack-prone pre-release attack-prone non attack-prone

All post-release attack-prone components are also pre-release attack-prone components.

10

Predicting Attack Counts

Pre-release non-security failures are good predictors of pre- and post-
release security failures (in our setting).
– Negative binomial distribution

• Standard error = 0.56
• p<.0001
• Value/DF = 0.92

11

Limitations

• Small sample size – 25 components

• Moderate R2 values

• Only one data set

• Only one static analysis tool
– Not representative of all static analysis tools.

• Testing effort not necessarily equivalent on all components

12

The Coupling Effect
• Coupling effect – “simple” problems found by FlexeLint are

coupled to more complex problems in design and
operation.
– E.g. - buffer overflow (simple) in same file as an access

control issue.
• Developer does not understand buffer overflows (a potential

security problem) which could indicate that they do not
understand the encryption requirements for an authentication
mechanism.

• Customer requirements are unclear design is ambiguous1

developers make guesses about the ambiguous designs.
– Failure reports

• 60% - coding bugs (hopefully found by static analysis tools)
• 40% - design flaws and operational vulnerabilities
• The “simple” 60% can predict the “complex” 40%

McGraw, G. Software Security: Building Security In, Boston, Addison-Wesley, 2006.

13

Summary

• Components with high code churn and FlexeLint alerts are attack-
prone.

• Components with many non-security failures are attack-prone.

• Reliability testers can find security vulnerabilities.

14

IAD

Looking for industrial partners!

Thank you!

mcgegick@ncsu.edu
williams@csc.ncsu.edu

	Attack-prone Components
	Where Should Security Efforts Begin?
	Research Outline
	Case Study
	Attack-prone Components
	Correlations
	Classification and Regression� Tree Analysis (CART)
	Attack-prone Prediction Results �from CART
	Non-security and Security Failure Counts
	Predicting Attack Counts
	Limitations
	The Coupling Effect
	Summary
	IAD

