SECURITY RISK METRICS: THE VIEW FROM THE TRENCHES

Alain Mayer CTO, RedSeal Systems Alain@RedSeal.net

Security Defects

•Defects

- Vulnerabilities on applications, OS, embedded systems
- Un-approved applications
- Outdated software
- Mis-configuration of network devices, such as firewalls, routers, load balancers
- Defects cause
 - Business Risk
 - Policy Violations
 - Compliance Failures

💰 Security Risk Manager - RedSeal Systems, Inc. Connected to:rafterman.lab [Version: RedSeal SRM Mainline (Build-development) Client Version: RedSeal SRM Mainline (Build-3291)] 🔔 🗖 🗙

<u>File Edit View Tools Help</u>

🕗 Analysis Current -

💰 Security Risk Manager - RedSeal Systems, Inc. Connected to:rafterman.lab [Version: RedSeal SRM Mainline (Build-development) Client Version: RedSeal SRM Mainline (Build-3291)] 🔔 🗖 🗙

File Edit View Tools Help

💰 Security Risk Manager - RedSeal Systems, Inc. Connected to:rafterman.lab [Version: RedSeal SRM Mainline (Build-development) Client Version: RedSeal SRM Mainline (Build-3291)] 🔔 🗖 🗙

⊘ Analysis Current

💰 Security Risk Manager - RedSeal Systems, Inc. Connected to:rafterman.lab [Version: RedSeal SRM Mainline (Build-development) Client Version: RedSeal SRM Mainline (Build-3291)] 🔔 🗖 🗙

<u>File Edit View Tools Help</u>

🌼 🖸 🧼 💋 🚺

Metrics: Operational vs Infrastructural

- Operational: measure the business impact of defects
 - Results in a priority ranking.
 - Objective: Effectively deploy IT resources on highest ranked defects.
- Infrastructural: measures an aspect of the state of the IT infrastructure
 - Properties of the threat graph, network configurations, etc
 - Objective: Characterize IT security stance, Comparative(?)

Operational Metrics

Infrastructural Metrics

Threat Graph Metrics

- 1. Longest threat graph path (Max Path)
 - Proxy for the depth of defense
- 2. Threat graph coverage (Coverage)
 - Fraction of hosts in the threat graph viz all hosts
 - Indicator for the breadth of defense
- 3. Attack surface ratio (Surface)
 - Fraction of hosts that when patched (or any other o their defects fixed) will remove the whole threat map.
 - Indicator for the quality of the DMZ design
 - Indicator for the amount of mitigation work

Network Device Metric

Ω

- 1. Average device complexity (Complexity)
 - Average number of filtering elements per device

Collect Data for Infrastructural Metrics

- Just ask!
- Obtained data during the evaluation (spot audit) of 14 prospects (now customers)
 - Representative sample
- Wide selection of verticals:
 - Health Care, Automotive, Financials, Online, etc.

- Threat Graph path lengths across our sample set
 - number of hops to take over all attackable hosts
 - depth of defense

→ What is your guess relative to the earlier example??

Longest and Average Threat Graph Path

3.5 3 2.5 2 1.5 1 0.5 0 2 3 4 5 6 7 8 9 10 1

Average Threat Graph Path (10 samples)

Longest Threat Graph Path (10 samples)

SURPRISED??

Max path vs coverage

1 ∡

Surface vs Coverage

>75% of hosts are protected and easy to mitigate the rest

Average Device Complexity

Complexity vs attack surface

As the device complexity grows, the attack surface tends to grow too!

So.....

- Internal Segmentation ... Like Bigfoot
 - Everybody has heard of it, but very few have seen it
 - Might change due to PCI Req 1?
 - Requires segments for card holder data, DMZ, wireless

- Defectsgrowing old in your infrastructure
 - Too many to fix them all...

So why?

- Security Silos
 - Rigidly patching only high-severity vulnerabilities might not remove defects with biggest risk impact
 - Firewall teams focused on enabling access for critical business systems
- Drift Happens!!
 - Even the best designed network does not stay that way (and not many are carefully designed to start with)
 - Frequent (sometimes daily) configuration changes eating away at the best intentions
- Complexity is not your Friend

So what?

- Understand risk by analyzing data across every aspect of your entire infrastructure.
- **Discover and rank** defects (i.e. vulnerabilities, misconfigurations, compliance failure, etc.) according to direct and indirect threat paths.
- **Coordinate the efforts** to patch, reconfigure, harden or re-architect based on fixing defects that pose the highest risk first.
- **Instantly assess** how changes will affect risk.

