
Security of Open Source Web

Applications

Maureen Doyle, James Walden
Northern Kentucky University

Students: Grant Welch, Michael Whelan

Acknowledgements: Dhanuja Kasturiratna

Outline

1. Research Objective

2. Related Work

3. Results

4. Analysis

5. Future Work

Research Objective

Goal: Identify effects of time, size,
complexity, and change rate on
vulnerability density (VD) of open
source web applications.

Research questions:
1. What is the current state of open source

web app security?

2. Can size or complexity predict VD?

3. Can churn or deletions predict VD?

Measuring Vulnerabilities

Reported Vulnerabilities in NVD or OSVD

– Coarse-grained time evolution.

– Difficult to correlate with revision.

– Undercounts actual vulnerabilities.

Dynamic AnalysisDynamic Analysis

– Expensive.

– False positives and negatives.

– Requires installation of application.

Static Analysis

– False positives and negatives.

– Static Analysis Vulnerability Density = vulns/kloc.

Code Metrics

Size measure

– Source Lines of Code (SLOC)

Complexity measures

– Cyclomatic Complexity

1

2

1. do loop

2. stmt– Cyclomatic Complexity

– Nesting Complexity

– Maximum, average, total

Change measures

– Churn = lines added + changed

– Lines deleted

22. stmt
3. end loop

3

CC = E – N + 2 P

= 3 – 3 + 2*1

Related Work

Static Analysis

– Nagappan and Ball, ICSE 2005a

– Coverity Open Source Report 2008

– Fortify Open Source Security Study 2008– Fortify Open Source Security Study 2008

Complexity and Change Metrics

– Nagappan and Ball, ICSE 2005b

– Nagappan, Ball, and Zeller, ICSE 2006

– Shin and Williams, QoP 2008

Samples

Selection process

– PHP web applications from freshmeat.net.

– Subversion repository with 100 weeks of revisions.

RevisionsRevisions

– One revision selected per week for analysis.

– Changes between individual revisions too small.

Range of projects

– 14 projects met selection criteria.

– 5,800 to 388,000 lines of code.

– Removing highest + lowest, range 25-150 kloc.

Results

Overall security improvement.

– first week average: 8.88 vulns/kloc

– final week average: 3.30 vulns/kloc

High compared to Coverity’s 0.30 SAVD.High compared to Coverity’s 0.30 SAVD.

– Language differences: C/C++ vs. PHP.

– Vulnerability diffs: buffer overflows vs XSS/SQL.

No correlation with NVD vulnerabilities.

– NVD correlated with freshmeat popularity.

Variation between Web Apps

5

50

Week 1

Week 100

200

V
u

ln
e

ra
b

il
it

y
 D

e
n

s
it

y

week 1: projects ranged from 0 to 121.4 vulns/kloc

week 100: projects varied from 0.20 to 60.86 vulns/kloc

0.05

0.5V
u

ln
e

ra
b

il
it

y
 D

e
n

s
it

y

Variation between Web Apps

Example: Addressing Security Issues

33500

34000

34500

35000

2.5

3

3.5

4

4.5

5

V
u

ln
e

ra
b

il
it

y
 D

e
n

s
it

y

Squirrelmail

1st drop: New data sanitization and input handling.

2nd drop: Fixed CVE-2006-3174 vulnerabilities.

32000

32500

33000

0

0.5

1

1.5

2

1 4 7
1
0

1
3

1
6

1
9

2
2

2
5

2
8

3
1

3
4

3
7

4
0

4
3

4
6

4
9

5
2

5
5

5
8

6
1

6
4

6
7

7
0

7
3

7
6

7
9

8
2

8
5

8
8

9
1

9
4

9
7

1
0
0

Vulns/KSLOC

SLOC

V
u

ln
e

ra
b

il
it

y
 D

e
n

s
it

y

0.6

0.7

0.8

0.9

1

achievo

phpwebsite

po

Small Projects (<50K SLOC)
SLOC versus SAVD

N
o

rm
a
li

z
e
d

V

u
ln

e
ra

b
il

it
y
 D

e
n

s
it

y

0

0.1

0.2

0.3

0.4

0.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

roundcube

smarty

squirrelmail

wordpress

Normalized SLOC

N
o

rm
a
li

z
e
d

V

u
ln

e
ra

b
il

it
y
 D

e
n

s
it

y

0.6

0.7

0.8

0.9

1

dotproject

gallery2

mantisbt

mediawiki

V
u

ln
e
ra

b
il

ty
D

e
n

s
it

y

Large Projects (> 50K SLOC)
SLOC versus SAVD (r = 0.27, 0.99 sig)

0

0.1

0.2

0.3

0.4

0.5

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

obm

phpbb

phpmyadmin

Linear
(dotproject)

Linear
(mediawiki)

Linear (obm)

N
o

rm
a
li

z
e
d

V
u

ln
e
ra

b
il

ty

Normalized SLOC

MaxCC
0.12

AvgCC
0.313

0.1

0.2

0.3

0.4

S
p

e
a
rm

a
n

's
 R

a
n

k
 C

o
rr

e
la

ti
o

n
Metric Analysis

Spearman's Correlation, r, to SAVD

TotalNest
-0.349

TotalCC
-0.26

maxNest
-0.119

Deleted
-0.068

Churn
-0.062

AvgNest
0.091

-0.4

-0.3

-0.2

-0.1

0

S
p

e
a
rm

a
n

's
 R

a
n

k
 C

o
rr

e
la

ti
o

n

Metric

0.6

0.7

0.8

0.9

1

n
o

rm
a
li
z
e
d

S

A
V

D

Small Projects (<50K SLOC)
AvgCC vs SAVD

achievo

phpwebsite

po
po

0

0.1

0.2

0.3

0.4

0.5

0.6

0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

n
o

rm
a
li
z
e
d

S

A
V

D

normalized AvgCC

po

roundcube

smarty

squirrelmail

wordpress

Linear (phpwebsite)

Linear (po)

0.6

0.7

0.8

0.9

1

n
o

rm
a
li
z
e
d

 S
A

V
D

Large Project (>50K SLOC)
AvgCC vs SAVD

dotproject

gallery2

mantisbt

mediawiki

0

0.1

0.2

0.3

0.4

0.5

0.75 0.8 0.85 0.9 0.95 1

n
o

rm
a
li
z
e
d

 S
A

V
D

normalized AvgCC

mediawiki

obm

phpbb

phpmyadmin

Conclusions

No single metric is predictive for SAVD.

– Similar to Naggapan and Ball’s results for

defects of five different Windows projects.

Complexity is an indicator for SAVD.Complexity is an indicator for SAVD.

– Supports Shin’s finding of weak correlations of

CC and NC with vulns in Mozilla JSE.

Churn is not an indicator for SAVD.

– Different from Naggapan and Ball’s results for

pre-release defect density in W2k3.

Future Work

Analyzing vulnerability type information

– 14 different types of vulnerabilities

– 5 severity levels

Why does app security vary so much?

– Analyze security processes for each app.

How do we validate SAVD measurement?

– NVD vulnerability count correlates with popularity.

Java web applications

– How does Java SAVD compare with PHP SAVD?

– How do trends compare between Java and PHP?

– More software metrics available for Java.

Extra Slides

SAVD vs Time and Size

SAVD vs. Nesting

SAVD vs. Churn

