
METRICS FOR DETECTING COMPROMISED SYSTEMS IN DISTRIBUTED SYSTEMS

Shivaraj Tenginakai

ABSTRACT

Current electronic commerce systems are built using

centralized client-server architecture; and their

constituent processes are deployed to trusted

computers. Therefore, attacks against these systems

are characteristically data attacks; with the goal of

accessing or compromising their confidential data.

However with emergence of distributed applications,

untrusted systems can now participate in electronic

commerce. Attacks against these systems can

compromise business processes that constitute

electronic commerce. Advances in cryptography and

network technology have made data security a

tractable and well understood problem. However,

process security continues to be a challenge. The

goal of this paper is to show that some of these

challenges may be due to misunderstanding of the

problem; and a better understanding may lead to

practical and effective solutions.

INTRODUCTION

Traditionally, electronic commerce systems have

been built using computers that are housed in secure

datacenters. For example, Amazon.com, eBay, or

Google control the hardware, operating system, and

applications on their systems. Therefore, for example,

attacking eBay’s auction algorithm or Google’s

search algorithm is not easy. However, with

emergence of platforms such as Facebook and

MySpace, it is now possible to build electronic

commerce processes that may execute across

untrusted systems. The behavior of such processes,

therefore, may be more easily compromised.

Consider, for example, an auction process

implemented using Facebook application platform. In

various embodiments, this process may consist of set

of participating auction agents on user computers. A

malicious user may compromise the auction process

by, for example, changing the clock on his or her

computer.

Detecting compromised processes is currently an area

of active research. Karnik and Tripathi describe

Ajanta mobile agent that uses secure log files and

Java security model to detect compromised behavior

[1][4]. Further, Haeberlen et al. describe PeerReview

system that also uses secure log files for detecting

compromised systems [5]. These approaches, thus,

reduce process security to characteristic data in

secure log files; and use data security methods.

Using log files may not be practical in many

situations. Some systems may not have sufficient

resources; and further, their data may not be always

available for analysis. For example, space may be at

premium in some participating systems such as

mobile devices; additionally, for systems with solid

state storage frequent writes to log files may decrease

the storage’s lifetime. Additionally, suspected

malicious users may be unwilling to provide access

to their log files citing, for example, their rights

against self incrimination.

Other approaches involve creating a sandbox for

detecting malicious applications [1]. However, again

these approaches are limiting as they may detect

applications created with malicious intent; but they

may be unable to detect a compromised instance of a

well behaved application.

Using distributed system terminology compromised

systems may be considered as faulty nodes; and

theories developed for distributed systems may be

applied for their detection. Current approaches to

detecting faulty nodes fall into two categories: first,

they rely on a set of correct nodes to detect faulty

nodes; second, they use data generated by all nodes

in the system. In Byzantine agreement problem

studied by Lamport et al. they proved that for a

system with k faulty nodes, at least 2k + 1 correct

nodes must be present to detect the k faulty nodes [2].

In second approach, developed by Vogels, nodes

regularly provide and exchange information about

their current state [3]; and based on this information

nodes can infer their faulty counterparts. Both these

approaches are again not practical for distributed

electronic commerce applications; as the number of

nodes may either be too large for them to participate

in a Byzantine agreement protocol; or, fraudulent

nodes may mask information about their state.

One reason for perceived difficulty in detecting

compromised systems is that current approaches

assume that compromised applications display

Byzantine fault characteristics; that is deviations

from their expected behavior is not deterministic.

However, electronic commerce applications that have

been compromised with intent of committing fraud

need not display Byzantine fault; because, for a fraud

attempt to be adequately profitable either it has to

repeated many times, or it has to target high valued

targets. Therefore, in various instances, this behavior

may be sufficiently deterministic to be detected by

macro-level metrics.

This paper describes methods to detect systems with

fraudulent electronic commerce applications using

certain macro-level metrics. Systems compute these

metrics based on their message communications and

report them to a trusted system. The trusted system

analyzes the metrics’ values and detects

compromised systems.

In various instances, application nodes may be

compromised in three ways: structural, temporal, and

data. A structurally compromised node may, for

example, withhold information from other systems,

or fail to provide information about itself. A

temporally compromised node may, for example,

mislead about timelines; and a data compromised

node may, for example, mislead about its data.

In various instances, data compromised nodes may be

detected using existing data security methods. This

paper introduces metrics for detecting structural and

temporal compromises.

For example, encryption may be used to safeguard

data from unauthorized modifications. Further, for

non-Byzantine faults, tracer bullet approaches may be

used to detect compromised nodes.

MESSAGE COUNTER

In various instances, an application node may be

considered as a black box; that for a given input

messages, Mi, message dispatches a set of output

messages, Mo1, Mo2, etc.

APPLICATIONMi

Mo1

Mo3

Mo2

 Fig. 1: Application Black Box

 Message Counter MC for an application node is

defined as:

 MC = f(MCc, Mi, Mo1, Mo2, Mo3,…)

Where,

 MCc is the current value of MC.

Since electronic commerce processes are

deterministic, thus for a given operation, a node’s

MC may be deterministic. Therefore, for a given

operation, a trusted node may be able to predict the

MC for untrusted systems. Untrusted systems

compute their MC and report it to the trusted

system; by analyzing the difference between

predicted and received values for nodes’ MC the

trusted node may detect structurally compromised

nodes.

In any distributed system, it is common for

messages to be dropped, retried and delayed.

Therefore under normal circumstances, there may be

occasional differences between predicted and actual

value of a node’s MC. However, if the node is

compromised and its behavior does not reflect

Byzantine failure, then the difference between

predicted and actual value of its MC may occur at a

frequency higher than normal. Even, if a node has

not been compromised consistent difference

between its predicted and actual message counter

value may be indicative of other issues such as

network connectivity, data corruption, and/or

inconsistencies in software versions and/or message

formats. Therefore, in various instances, message

counter may capture MC macro-level correctness for

nodes in a distributed system.

LAMPORT LOGICAL CLOCKS

Lamport logical clocks are used in distributed

systems to order messages. In various instances,

each application node may maintain a Lamport

clock, and it may use it to timestamp its outbound

messages. These timestamps may be used to infer

causality between messages. For example, using

Lamport clock the outbound messages Mo1, Mo2,

Mo3, etc. will have a timestamp greater than inbound

message Mi. Moreover, a node may reject messages

with timestamps less than its current Lamport clock

value.

Again as electronic commerce are deterministic; for

a given operation, a node’s resultant Lamport clock

value may be deterministic. Thus a trusted node

may predict a node’s Lamport clock value for a

given operation; consistent difference between

predicted and reported value may be an indicator of

temporally compromised nodes.

COMPROMISED NODE DETECTION

The following figure shows a system based on these

metrics.

TRUSTED

NODE

APPLICATION

NODE

TRUSTED

NODE

APPLICATION

NODE

APPLICATION

NODE

Fig. 2 Compromised Node Detection.

Application nodes may compute their message

counter and update their Lamport clocks for each

operation. Correspondingly, the trusted node may

also predict these values based on operation’s

characteristics.

Further, application nodes may report their metrics

values periodically, after each operation or before

the operation is committed. If the predicted and

reported values differ, trusted node may analyze this

difference to detect compromised nodes. Such

nodes may be dropped from future operations, or the

process may be suspended.

As there may be communication between

application nodes, a node that reports false metric

values may still be detected unless all the nodes in

the system cooperatively report false values.

Since, these metrics may be maintained in memory;

there is minimal I/O overheard. Further, these

metrics are simple enough to be used in devices with

limited resources.

Additionally, this approach is more scalable than

using log files; as the data generated is minimal.

Assuming that both message counter and Lamport

clocks are 8 byte doubles, for a million nodes this

size of dataset is 16 MB. This is miniscule

compared to data that would be generated using log

files.

IMPLEMENTATION

An implementation of this system is currently

underway for building an ecommerce system using

limited resource systems.

Empirical data about the effectiveness of this

metrics will be presented at the conference.

REFERENCES

1. Distributed Systems: Principals and Paradigms

(2
nd

 Edition), Andrew S. Tanenbaum and

Maarten van Steen, Prentice Hall, October

2006.

2. The Byzantine Generals Problem, Leslie

Lamport, Robert Shostak, and Marshall Pease,

ACM Transactions on Programming Languages

and Systems, 1982.

3. Tracking Service Availability in Long Running

Business Activities, Werner Vogels, First

International Conference on Service Oriented

Computing, 2003.

4. Mobile Agent Programming in Ajanta, Anand

R. Tripathi, Neeran M. Karnik, Manish K.

Vora, Tanvir Ahmed, and Ram D. Singh,

Proceedings of the 19th International

Conference on Distributed Computing Systems,

1999.

5. PeerReview: Practical Accountability for

Distributed Systems, Andreas Haeberlen, Petr

Kuznetsov, and Peter Druschel, Proceedings of

the 21st ACM Symposium on Operating

Systems Principles (SOSP '07), Stevenson, WA,

October 2007.

