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ABSTRACT 

Current electronic commerce systems are built using 

centralized client-server architecture; and their 

constituent processes are deployed to trusted 

computers. Therefore, attacks against these systems 

are characteristically data attacks; with the goal of 

accessing or compromising their confidential data. 

However with emergence of distributed applications, 

untrusted systems can now participate in electronic 

commerce. Attacks against these systems can 

compromise business processes that constitute 

electronic commerce. Advances in cryptography and 

network technology have made data security a 

tractable and well understood problem. However, 

process security continues to be a challenge.  The 

goal of this paper is to show that some of these 

challenges may be due to misunderstanding of the 

problem; and a better understanding may lead to 

practical and effective solutions. 

INTRODUCTION 

Traditionally, electronic commerce systems have 

been built using computers that are housed in secure 

datacenters. For example, Amazon.com, eBay, or 

Google control the hardware, operating system, and 

applications on their systems. Therefore, for example, 

attacking eBay’s auction algorithm or Google’s 

search algorithm is not easy.  However, with 

emergence of platforms such as Facebook and 

MySpace, it is now possible to build electronic 

commerce processes that may execute across 

untrusted systems.  The behavior of such processes, 

therefore, may be more easily compromised.  

Consider, for example, an auction process 

implemented using Facebook application platform. In 

various embodiments, this process may consist of set 

of participating auction agents on user computers. A 

malicious user may compromise the auction process 

by, for example, changing the clock on his or her 

computer. 

Detecting compromised processes is currently an area 

of active research. Karnik and Tripathi describe 

Ajanta mobile agent that uses secure log files and 

Java security model to detect compromised behavior 

[1][4]. Further, Haeberlen et al. describe PeerReview 

system that also uses secure log files for detecting 

compromised systems [5].  These approaches, thus, 

reduce process security to characteristic data in 

secure log files; and use data security methods. 

Using log files may not be practical in many 

situations. Some systems may not have sufficient 

resources; and further, their data may not be always 

available for analysis.  For example, space may be at 

premium in some participating systems such as 

mobile devices; additionally, for systems with solid 

state storage frequent writes to log files may decrease 

the storage’s lifetime. Additionally, suspected 

malicious users may be unwilling to provide access 

to their log files citing, for example, their rights 

against self incrimination.  

Other approaches involve creating a sandbox for 

detecting malicious applications [1]. However, again 

these approaches are limiting as they may detect 

applications created with malicious intent; but they 

may be unable to detect a compromised instance of a 

well behaved application. 

Using distributed system terminology compromised 

systems may be considered as faulty nodes; and 

theories developed for distributed systems may be 

applied for their detection. Current approaches to 

detecting faulty nodes fall into two categories: first, 

they rely on a set of correct nodes to detect faulty 

nodes; second, they use data generated by all nodes 

in the system.   In Byzantine agreement problem 

studied by Lamport et al. they proved that for a 

system with k faulty nodes, at least 2k + 1 correct 

nodes must be present to detect the k faulty nodes [2].  

In second approach, developed by Vogels, nodes 

regularly provide and exchange information about 

their current state [3]; and based on this information 

nodes can infer their faulty counterparts. Both these 

approaches are again not practical for distributed 

electronic commerce applications; as the number of 

nodes may either be too large for them to participate 

in a Byzantine agreement protocol; or, fraudulent 

nodes may mask information about their state.  

 



One reason for perceived difficulty in detecting 

compromised systems is that current approaches 

assume that compromised applications display 

Byzantine fault characteristics; that is deviations 

from their expected behavior is not deterministic. 

However, electronic commerce applications that have 

been compromised with intent of committing fraud 

need not display Byzantine fault; because, for a fraud 

attempt to be adequately profitable either it has to 

repeated many times, or it has to target high valued 

targets. Therefore, in various instances, this behavior 

may be sufficiently deterministic to be detected by 

macro-level metrics.  

This paper describes methods to detect systems with 

fraudulent electronic commerce applications using 

certain macro-level metrics. Systems compute these 

metrics based on their message communications and 

report them to a trusted system. The trusted system 

analyzes the metrics’ values and detects 

compromised systems.  

In various instances, application nodes may be 

compromised in three ways: structural, temporal, and 

data. A structurally compromised node may, for 

example, withhold information from other systems, 

or fail to provide information about itself. A 

temporally compromised node may, for example, 

mislead about timelines; and a data compromised 

node may, for example, mislead about its data.   

In various instances, data compromised nodes may be 

detected using existing data security methods. This 

paper introduces metrics for detecting structural and 

temporal compromises. 

For example, encryption may be used to safeguard 

data from unauthorized modifications. Further, for 

non-Byzantine faults, tracer bullet approaches may be 

used to detect compromised nodes. 

MESSAGE COUNTER 

In various instances, an application node may be 

considered as a black box; that for a given input 

messages, Mi, message dispatches a set of output 

messages, Mo1, Mo2, etc.   
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 Fig. 1: Application Black Box 

 Message Counter MC for an application node is 

defined as: 

 

 MC = f(MCc, Mi, Mo1, Mo2, Mo3,…) 

 

Where,  

 MCc  is the current value of MC. 

 

Since electronic commerce processes are 

deterministic, thus for a given operation, a node’s 

MC may be deterministic.  Therefore, for a given 

operation, a trusted node may be able to predict the 

MC for untrusted systems. Untrusted systems 

compute their MC and report it to the trusted 

system; by analyzing the difference between 

predicted and received values for nodes’ MC the 

trusted node may detect structurally compromised 

nodes. 

 

In any distributed system, it is common for 

messages to be dropped, retried and delayed. 

Therefore under normal circumstances, there may be 

occasional differences between predicted and actual 

value of a node’s MC. However, if the node is 

compromised and its behavior does not reflect 

Byzantine failure, then the difference between 

predicted and actual value of its MC may occur at a 

frequency higher than normal.  Even, if a node has 

not been compromised consistent difference 

between its predicted and actual message counter 

value may be indicative of other issues such as 

network connectivity, data corruption, and/or 

inconsistencies in software versions and/or message 

formats. Therefore, in various instances, message 

counter may capture MC macro-level correctness for 

nodes in a distributed system.  

 

 

LAMPORT LOGICAL CLOCKS 

 

Lamport logical clocks are used in distributed 

systems to order messages.  In various instances, 

each application node may maintain a Lamport 

clock, and it may use it to timestamp its outbound 



messages.  These timestamps may be used to infer 

causality between messages. For example, using 

Lamport clock the outbound messages Mo1, Mo2, 

Mo3, etc. will have a timestamp greater than inbound 

message Mi. Moreover, a node may reject messages 

with timestamps less than its current Lamport clock 

value.  

 

Again as electronic commerce are deterministic; for 

a given operation, a node’s resultant Lamport clock 

value may be deterministic.  Thus a trusted node 

may predict a node’s Lamport clock value for a 

given operation; consistent difference between 

predicted and reported value may be an indicator of 

temporally compromised nodes. 

 

COMPROMISED NODE DETECTION  

 

The following figure shows a system based on these 

metrics.  
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Fig. 2 Compromised Node Detection. 

 

Application nodes may compute their message 

counter and update their Lamport clocks for each 

operation. Correspondingly, the trusted node may 

also predict these values based on operation’s 

characteristics.   

 

Further, application nodes may report their metrics 

values periodically, after each operation or before 

the operation is committed. If the predicted and 

reported values differ, trusted node may analyze this 

difference to detect compromised nodes.  Such 

nodes may be dropped from future operations, or the 

process may be suspended. 

 

As there may be communication between 

application nodes, a node that reports false metric 

values may still be detected unless all the nodes in 

the system cooperatively report false values. 

 

Since, these metrics may be maintained in memory; 

there is minimal I/O overheard. Further, these 

metrics are simple enough to be used in devices with 

limited resources.  

 

Additionally, this approach is more scalable than 

using log files; as the data generated is minimal. 

Assuming that both message counter and Lamport 

clocks are 8 byte doubles, for a million nodes this 

size of dataset is 16 MB. This is miniscule 

compared to data that would be generated using log 

files.  

 

IMPLEMENTATION  

 

An implementation of this system is currently 

underway for building an ecommerce system using 

limited resource systems.  

 

Empirical data about the effectiveness of this 

metrics will be presented at the conference. 
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