Proceedings of The Eighth Annual Meeting of Metricon

Friday, March 1, 2013 San Francisco, CA

Metricon is a forum for lively, practical discussion in the area of security metrics.

DRAFT FOR PARTICIPANT REVIEW Please use Word Track Changes and Comments features or just sent comments via email to: jennifer@bayuk.com

DRAFT FOR REVIEW

Metricon 8

Table of Contents

1.	Executive Summary		
2.	Scope and Approach	4	
3.	Key Metrics	6	
	3.1. Data Breach Costs	6	
	3.2. Malware Identification	8	
	3.3. Vulnerability Management	9	
	3.4. System Development Controls	11	
	3.5. Information Security Program	13	
	3.6. Cyber Security Risk	16	
	3.7. Business Impact	17	
4.	Summary and Next Steps	18	
App	endix: Participants	19	
	Workshop Participants	19	
	Facilitators	20	
	Lightning Talks	20	
	Enterprise Panelists	20	
	Data Publisher Panelists	20	
	Metricon 8 Conference Committee	21	
	Metricon Steering Committee	21	

1. Executive Summary

The goal of Metricon 8 was to bring together practitioners in security metrics, review both the state of the art and the state of the practice in security metrics, and leverage the collective wisdom of participants to take the first steps toward a taxonomy or framework for metrics in areas that are of significant value to enterprise security programs.

The event consisted of direction-setting discourse, a panel consisting of leading metrics data publishers, a panel consisting of enterprise security practitioners, short talks on emerging trends, and facilitated group sessions focused on metrics of common interest. The outcome was a short list of key metrics in these areas:

- Data Breach Costs
- Malware Identification
- Vulnerability Management
- Systems Development Controls
- Information Security Program
- Cyber Security Risk
- Business Impact

This report includes the scope and approach of the Metricon 8 workshop, as well as detailed descriptions of the metrics identified as key indicators of effective information security. An appendix lists workshop participants and roles.

The goal was achieved in that the collective wisdom of participants was leveraged to take the first steps toward a taxonomy or framework for metrics in areas that are of significant value to enterprise security programs. However, these were baby steps that left the security metrics community profoundly aware of how large the gap is between the state of the art in security metrics and the metrics needed by enterprise security practitioners.

2. Scope and Approach

The day began with a discussion of goals and objectives led by the program chair. Participants self-identified areas of interest, loosely based on a list provided in the program agenda. Facilitator-led break-out groups aligned with these areas of interest, and these produced an initial set of metrics. The plan for each facilitator-led group session was threefold:

- 1. Create a series of scenarios associated with topic areas.
- 2. Define a set of metrics that will best inform decisions regarding these scenarios.
- 3. Review published data to see what we can pull from it and conduct a gap analysis.

Elements expected to compose the metrics definitions were listed in the program:¹

Name:	Descriptive label
Measure:	The unit of quantitative measurement(s).
Scenarios:	Describe the scenarios where the metric would be useful.
Frequency:	Propose time periods for collection of data that is used for measuring changes over time.
Formula:	Describe the calculation to be performed that results in a numeric expression of a metric.
Indicators:	Provide information about the meaning of the metric and its performance trend.

After completing steps 1 and 2, the groups reported their preliminary results to in a general session augmented by an "enterprise" panel with CISO-level enterprise security experience. First the panel commented on the outcome, then the discussion opened to all participants. Groups were expected to use this feedback to refine their metrics lists.

The idea was to incorporate an evaluation of existing industry data sources with an eye toward identifying alignments, gaps, and overlaps as these reports relate to the needs of the enterprise security professional. To this end, this enterprise panel was followed by a series of "lightning talks" on emerging issues, so named because they were limited to 5-10 minutes each. Following the lightning talks, a diverse panel of metrics data publishers were asked to describe what is in their reports and to discuss how they expect enterprise security practitioners to make use of the data in the report to make decisions.

Topics covered in the lightning talks were:

• Pete: please fill in lightning talk topics

The members of the data publishing panel represented firms who collect and publish data in three different segments of the security breach lifecycle. Each had a different concern about how their data was being used. The segments and corresponding concerns are briefly summarized as follows:

- Independent publisher of vulnerabilities and threats
 - Budget and clarity constraints prevent us from covering every single vulnerability, so what criteria should we use to determine inclusion?
 - We need to evolve with technology, but how do we know when we make changes that these will not diminish utility to our subscribers?
- Security service provider publisher of incident metrics in progress
 - Do we correctly recognize a compromise?
 - How do we know we have set severity levels appropriately?
 - Security forensics firm publisher of post-mortem data on security breaches
 - What data can we collect that will lead us to root cause?
 - How can we use data on compromised customers to help others?

•

¹ These key features of metrics were adapted from NIST SP 800-55.

The resulting discussion was open to all participants. A major topic of discussion was the burden on practitioners to absorb results from multiple reports that share no common references on methodology or metrics terminology. One insightful comment, that it was admitted has occasionally surfaced on the securitymetrics.org mail list, was on the need for the Center of Disease Control (CDC) of information security breaches. It was observed that breach information has sometimes been aggregated from disparate sources and that doing this the wrong way can be very misleading.

3. Key Metrics

The key metrics produced by each group are below organized by the scenario faced by a security practitioner. The scenario is briefly described in text, and supported by a table that lists several of the elements expected to compose the metrics definitions as defined in the workshop program. Each scenario is followed by a description of what the metrics would *indicate* to a decision-maker. As defined in the program, these indicators provide information about the meaning of the metric and its potential performance trends.

3.1. Data Breach Costs

This group focused on ways to measure the cost of a security breach. They examined indicators of impact, whether initial, downstream or cascading. They also identified characteristics of data breach events that would require additional losses to be calculated. Measureable attributes of these subsets of data breach loss calculations are listed in a table corresponding to each category. Note that the losses described in the first table represent the minimum set of attributes that are common to all breach losses, and so losses for data breaches in subsequent tables should be added to those in the first table. Of course, any given breach may have unique loss characteristics, so it is to be expected that real loss calculations would combine items from multiple tables among others not listed.

	Scenario 1. All Security Breaches						
Metric Name	Measures ²	Frequency	Formula	Unit			
Breach Count	#Internally_Detected_Breaches	Increment	#Internally_Detected_	Count			
	#Externally_Detected_Breaches	with each	Breaches +				
			#Externally_Detected_				
			Breaches				
Forensics	#Systems	Per breach	#Systems *	Currency			
	Cost_Per_System		Cost_Per_System				
Investigate	Investigation_Labor	Per breach	Sum of all measures	Currency			
	Legal_Advice						
	Internal_Staff_Time						

 $^{^2}$ To indicate a single, multi-word, measure description, underlines are used instead of spaces to connect the words.

Remediate	e Consultants		Sum of all measures	Currency
	Reimage_Systems			
	Upgrade_Systems			
	Internal_Staff_Time			
Opportunity	rtunity Estimated Productivity of		Sum of all measures	Currency
	Displaced_Staff			
	Economic_Impact_of_Project_			
	Milestones_Not_Met			

As indicators, metrics in this scenario can be used to calculate the *operational cost* of a data security breach, independent of the value of information compromised. Several elements of this scenario are therefore reusable (and therefore referenced) by scenarios created by other workshop groups. Note that the first metric, the number of breaches wherein each breach is assigned an incremental number, serves as a tracking mechanism to ensure that all appropriate data is collected per breach. The distinction between internally and externally detected breaches is relevant because breaches that are externally detected may not easily be mapped to compromised systems. This situation also surfaces in Scenario 10.

A unique scenario in data breaches are breaches that result in the compromise of personally identifiable information (PII). PII breach losses have unique characteristics, and the level of activity in each of the loss calculation areas will be dependent on the jurisdiction of the multiple government entities that regulate such events.

	Scenario 2. PII Data Breaches						
Metric Name Measures		Frequency	Formula	Unit			
Insurance	Policy_Cost	Annual	Policy_Cost /	Currency			
	Number_of_Breaches		Number_of_Breaches				
Notification	Mail_or_Automation	Per PII record	Sum of all cost	Currency			
Response Handling			measures in scope of				
Internal_Staff_Time			breach				
PII Remediation	Credit_Coverage_for_	Per PII record	Sum of all measures	Currency			
	Victims		in scope of breach				
Regulatory	Filing_Process_Execution	Quarterly	Sum of all measures	Currency			
Amending_Executive_			in scope of breach				
	Reports						

As indicators, metrics in this scenario can be used in cost-benefit analysis decisions with respect to cyber security insurance and notification technology alternatives. In combination with Scenario 1, it can be used to justify the cost of PII security measures.

Note that it is not assumed that all breached will be revealed to the public or will results in data misuse that leads to fraud. However, breaches that have these consequences will have additional loss attributes. These are captured in the scenario of potential downstream impact.

	Scenario 3. Downstream Impact of Data Breaches						
Metric Name	Measures	Frequency	Formula	Unit			
Legal	Case_Preparation_Costs	Per breach	Sum of all measures	Currency			
	Court_Fees		in scope of breach				
	Settlement_Fees						
	Settlement_Compliance_Process						
	Charges_for_Missing_Contractual_						
	Service_Level_Agreement_Targets						
Fraud	Asset_Loss	Per breach	Sum of all measures	Currency			
	Legal_Prosecution		in scope of breach				
Reputation	Lost_Business	Per breach	Sum of all measures	Currency			
	Public Relations Overtime		in scope of breach				
	New_Public_Relations_Campaign		-				
Regulatory	Filing_Process Execution	Per breach	Sum of all measures	Currency			
	Amending_Executive_Reports		in scope of breach				

As in, and in combination with, Scenarios 1 and 2, these indicators can be used in costbenefit analysis decisions with respect to cyber security insurance and/or protective measures. They may also be used to evaluate the cost-benefit of settling rather than trying or defending cyber security court cases.

This group also discussed reasons why an enterprise should collect data breach metrics even if the breach was not PII or Public. These involved:

- Determining risk tolerance
- Driving investment
- Planning for robustness, considerations of scale
- To calculate the cost/benefit of diverting funds reserved for notification into prevention

The enterprise panel commented that they would like to see measurements that would be necessary to measure these dimensions, but the group left that task to future work.

3.2. Malware Identification

A significant part of the discussion on malware focused on how to to best allocate resources between diff technology approaches. It is well known that different anti-virus vendors have different false positive rates, and combinations of technologies are often used to identify malware. Hence, one scenario was devoted to measures with which to compare alternative technologies, and another focused on measures of effectiveness.

Scenario 4. Signature-Based Blacklist Malware Blocking					
Metric Name Measures		Frequency	Formula	Unit	
Block Benefit	Number_of_Blocks	Per day	Number_of_Blocks *	Currency	
	Malware_Hit_Rate		Hit_Rate *		
	Averted_Remediation ³		Averted_Remediation		
Opportunity	pportunity Number of Blocks		Number_of_Blocks *	Currency	
Block False_Positive_Rate			False_Positive_Rate *		
	Block_Opportunity_Cost ⁴		Block_Opportunity_Cost		

³ See Scenario 1 for a breakdown of remediation costs.

Block	License_Fees	Per month,	Sum of all cost measures	Currency
Technology Cost	Management_Servers	amoritized		
	Infrastructure_Integration			
	Technology_Staff_Support			
	User_Inconvenience			

As indicators, metrics in this scenario can be used in cost-benefit analysis decisions with respect to signature-based blocking technology. The product that had the highest malware hit rate and lowest false positive rate at the lowest Block Technology Cost should be preferred.

Scenario 5. Data Leakage					
Metric Name	Measures	Frequency	Formula	Unit	
Egress Monitors	#Devices_Hitting_Known_	Per instance	Existence test	True/False	
Bad Sites					
#Gateways Used for					
	Sensitive_Data_Exfiltration				
External Reports Presence of Enterprise		Per instance	Existence test	True/False	
	Data_Found_on_Known_				
	Malware_Operator_Sites				

Metrics in this scenario are an independent indicator that can be used to determine whether or not an existing combination of anti-malware technology is effective. Of course, where these metrics yield "true" results, the instance of data leakage must be investigated to determine the root cause, which may or may not be malware. Regardless, where data is known to have been compromised, these metrics should be folded into the Security Breach metrics described in Scenarios 1-3.

The group also discussed the inadequacy of using blocks as a unit of measure in Scenario 4 because multiple blocks may be due to a single piece of malware on a single device, or due to the bad behavior of a single user. The concepts that *block rates* should be substituted for blocks was discussed, but the concept was not fully fleshed out.

3.3. Vulnerability Management

The mission of this group differs from that of the malware identification group in that it was focused on the mitigation rather than the identification of vulnerabilities (or "vulns"). The idea is that there are always vulnerabilities, and metrics should be used to make decisions about which ones to fix. They also faced the scenario wherein multiple vulnerabilities should be fixed, but scarce resources require decisions on the priority of one fix over another. The vulnerability management group had three types of decisions in mind:

⁴ See Scenario 1 for a breakdown of opportunity costs.

- Focus on most important systems ٠
- Use budgets effectively ٠
- ٠ Measure good IT operations

The last is important because traditional vulnerability management metrics count the number of vulnerabilities found in systems. Yet if this approach is used and no vulnerabilities are found, systems cannot be declared to be invulnerable because they tests may not include vulnerabilities that are in the systems, and the test themselves often yield false negatives.⁵ As these measures cannot be practically applied to claim that security is good, they have been mocked as "badness-ometers," a scale on which every measure is bad, with no measure of good.⁶ Nevertheless, the group had a hard time coming up with prioritization metrics without including badness-ometers, and the first two goals are merged into one scenario in the table below.

	Scenario 6. Priority Management					
Metric Name	Measures	Frequency	Formula	Unit		
System Value	System_Transaction_	Daily	Sum of measures per	Currency		
Revenue			system ⁸	per		
Loss Avoidance ⁷				System		
				List		
Sensitivity	System_Connects_to_	Daily	Existence test	System		
	Sensitive_Data			List		
Vulnerability	CVSS Scores ⁹	Per vulns	Use CVSS Scores,	One of:		
Level	Environmental_Factors		which specify	(High,		
			Environmental_Factors	Medium,		
			to map onto a three-	Low)		
			level ordinal scale			
Badness-ometer	Total_Number_Target_Systems	As testing	Match Total_Number_	Ordered		
	Target_Systems_with_Known_	schedule	Target_Systems to	list of		
	Vulns	permits	System Value and	systems		
	Target_Systems_with_Severe_		Sensitivity lists sorted			
	Vulns		by currency and data			
			sensitivity, filter by			
			Target_Systems_with_			
			Severe_Vulns,			
			breaking ties with			
			higher Vulnerability			
			Levels			

⁵ Doupé, A., M. Cova, and G. Vigna, Why Johnny Can't Pentest: An Analysis of Black-Box Web Vulnerability Scanners in Detection of Intrusions and Malware, and Vulnerability Assessment, Lecture Notes in Computer Science, C. Kreibich and M. Jahnke, Editors, Springer Berlin Heidelberg, 2010, p. 111-131.

⁶ McGraw, G., Software Security, Addison-Wesley, 2006.

⁷ Measured using assumptions that the vulnerability was exploited and corresponding baseline losses from Scenario 1.

⁸ The team acknowledges that the definition of "system" needs work, it may actually amount to application or business technology process. ⁹ Mell, P., K. Scarfone, and S. Romanosky, *A Complete Guide to the Common Vulnerability Scoring*

System Version 2.0, 2007, Forum of Incident Response and Security Teams (FIRST).

Note that it is important to measure the total number of target systems in the badnessometer metric because this may be used to ensure that no system will escape the measurement process. As indicators, metrics in this scenario can be used to set priorities for vulnerability remediation. Note that there is no assumption that remediation exist, nor that the remediate activity chosen will be effective. Some aspects of remediation effectiveness metrics are addressed in the Security Program Effectiveness Scenario number 9.

The third goal, that of supporting technology operations decision-making with respect to closing vulnerabilities, emerged as a unique scenario, though not fully fleshed out. Where vulnerabilities are so numerous that allocated resources cannot cover the highest, then the metrics from Scenarios 1-3 in combination with assessments on incident likelihood and remediation effectiveness may be used to evaluate the cost-benefit of additional resource allocation. This obviously covers more ground than vulnerability management, and is essential to facilitate vulnerability management. It reflects the group's conclusion that good security is not likely in the absence of sound technology operations.

3.4. System Development Controls

This group looked at systems and software development lifecycle (generically referred to hereafter as "SDLC") security control decisions. The idea was to come up with a few metrics that show which development activities result in fewer security incidents.

	Scen	ario 7. Activ	ities to Include in SDLC	
Metric Name	Measures	Frequency	Formula	Units
Requirements	#Identified_Defects	Per release	#(Identified_Defects mapped to	#New_Defects
-	#Severe_Defects	and Per	Identified Defects in rows above)	#Old_Defects
	#False_Positives	Developer	Cost / (#Identified_Defects	and
	Cost		- #False_Positives)	Currency per
			Cost / #Severe_Defects	(Severe) Defect
Code Review	#Identified_Defects	Per release	#(Identified_Defects mapped to	#New_Defects
	#Severe_Defects	and Per	Identified_Defects in rows above)	#Old_Defects
	#False_Positives	Developer	Cost / (#Identified_Defects	and
	Cost		- #False_Positives)	Currency per
			Cost / #Severe_Defects	(Severe) Defect
Abuse Case	#Identified_Defects	Per release	#(Identified_Defects mapped to	#New_Defects
Tests	#Severe_Defects	and Per	Identified_Defects in rows above)	#Old_Defects
	#False_Positives	Developer	Cost / (#Identified_Defects	and
	Cost		- #False_Positives)	Currency per
			Cost / #Severe_Defects	(Severe) Defect
Static	#Identified_Defects	Per release	#(Identified_Defects mapped to	#New_Defects
Analysis	#Severe_Defects	and Per	Identified_Defects in rows above)	#Old_Defects
	#False_Positives	Developer	Cost / (#Identified_Defects	and
	Cost		- #False_Positives)	Currency per
			Cost / #Severe_Defects	(Severe) Defect
Dynamic (&	#Identified_Defects	Per release	#(Identified_Defects mapped to	#New_Defects
Fuzz)	#Severe_Defects	and Per	Identified_Defects in rows above)	#Old_Defects
Analysis	#False_Positives	Developer	Cost / (#Identified_Defects	and
	Cost		- #False_Positives)	Currency per
			Cost / #Severe Defects	(Severe) Defect

User	#Identified_Defects	Per release	#(Identified_Defects mapped to	#New_Defects
Acceptance	#Severe_Defects	and Per	Identified_Defects in rows above)	#Old_Defects
Tests	#False_Positives	Developer	Cost / (#Identified_Defects	and
	Cost	_	- #False_Positives)	Currency per
			Cost / #Severe_Defects	(Severe) Defect
Penetration	#Identified Defects	Per release	#(Identified Defects mapped to	#New Defects
Tests	#Severe Defects	and Per	Identified Defects in rows above)	#Old Defects
	#False_Positives	Developer	Cost / (#Identified_Defects	and
	Cost	_	- #False_Positives)	Currency per
			Cost / #Severe_Defects	(Severe) Defect
Operations	#Identified_Defects	Per release	#(Identified_Defects mapped to	#New_Defects
Reports	#Severe_Defects	and Per	Identified_Defects in rows above)	#Old_Defects
-	#False_Positives	Developer	Cost / (#Identified_Defects	and
	Cost	-	- #False_Positives)	Currency per
			Cost / #Severe Defects	(Severe) Defect

As indicators, metrics in this scenario can be used in two ways. The first is to add up all currency units to identify the total cost (in terms of the staff time, technology, and technology support devoted to the activity) of software security efforts per developer or per software release. The second, and more informative, would be to correlate software security improvement with activities typically recommended to be performed in the system development lifecycle. If different software projects use subsets of the scope of available activities, then the projects can be compared to see if some combinations are more effective overall than others. These metrics may also indicate development and development manager quality, as they are reused in Scenario 8.

Scenario 8. SDLC Assessment				
Metric Name	Measures	Frequency	Formula	Unit
Security	Requirements	As new	For each developer,	True/False
Training	Design	techniques	which modules taken and	per
	Secure_Coding	evolve	passed	Developer
Software	Scenario 7 Metrics for all	Quarterly	Use available criteria to	Ordinal
Management	software releases under a		rate each software	Software
	given software manager		manager, focus on	manager
			finding defects early and	rank
			lowering total cost	
Impact	Operations Defects ¹⁰	Per incident,	Combine with software	Currency
-	Remediation ¹¹	per software	management rank to	
		manager	charts historical trends	

As indicators, metrics in this scenario can be used to correlate software security quality metrics from Scenario 7 with developer training programs and software management organizations, potentially to support decisions for developer training and organizational improvement. These metrics may also be used to assign developers and software organizations to security-critical system components.

Discussion of this topic included potential strategies to maximize the cost-benefit of using independent penetration tester to minimize the dependency on the (in)experience of

¹⁰ Measured as in the Operations Reports of software security defects metrics of Scenario 7.

¹¹ Where discovered during a breach, measured using the cost of security breach metrics from Scenarios 1 thru 3. Where no breach has been known to occur, measured using the Remediation metrics of Scenario 1.

individual testers. There were also concerns about the software development environment itself that remain to be addressed. For example, does software development in the cloud increase the potential for accidentally or maliciously introduced vulnerabilities? Moreover, it was acknowledged that, as these indicators are all defect-driven, they are all badness-ometers, and thus cannot be used to declare that software is secure, just that is it not known to be not secure.

3.5. Information Security Program

This group operated on the principal that the effectiveness of an information security program should be measured by outcome. This typically means adequate protection of information and infrastructure and prevention of security breaches. Hence, the group chose to focus on incident handling rather than controls to determine effectiveness. It is assumed that a design for security exists, that controls correspond to the design, and that the program has a method of identifying deviation from those controls. The team considered two scenarios, that of control effectiveness, and that of control improvement through information sharing.

Scenario 9. Control Effectiveness				
Metric Name	Measures	Frequency	Formula	Unit
Compromised	#Controlled_Devices	Daily, count	#Compromised_CDs /	Percent
Controlled	(CDs)	devices only	#Controlled_Devices	Compromised
Devices	#Compromised_CDs	once per		CDs
		day, upon		
		compromise		
Mean Time to	Time_CD_Compromised	Upon	Sum over CDs	Minutes
Detect	Time_CD_Compromise_	occurrence,	(Time_CD_Compromise_	
	Detected	As well as	Detected -	
	#CD_Compromises	aggregates	Time_CD_Compromised)	
		for trend	/ #CD_Compromises	
		analysis		
Time to Triage	Time_CD_Compromise_	Upon	Sum over CDs	Minutes
	Detected	occurrence,	(Time_CD_Compromise_	
	Time_CD_Compromise_	As well as	Response_Decision	
	Response_Decision	aggregates	-	
	#CD_Compromises	for trend	Time_CD_Compromise_	
		analysis	Detected)	
			/ #CD_Compromises	
Time to	Time_CD_Compromise_	Upon	Sum over CDs	Minutes
Stabilize	Response_Decision	occurrence,	(Time_CD_Impact_	
	Time_CD_Impact_	As well as	Averted /	
	Averted	aggregates	Time_CD_Compromise_	
	#CD_Compromises	for trend	Response_Decision)	
		analysis	/#CD_Compromises	
Time to Report	Time_CD_Compromise_	Upon	Sum over CDs	Minutes
	Detected	occurrence,	(Time_CD_Compromise_	
	Time_CD_Compromise_	As well as	Reported	
	Reported	aggregates	-	
	#CD_Compromises	for trend	Time_CD_Compromise_	
		analysis	Detected)	
			/ #CD Compromises	

Note that the count of compromised devices, although counted daily, is not a point of time, end of day count. Instead, it is the number of controlled devices that were in a compromised state at any time during the day. This indicates an unintended change in a security attribute, the controlled device is thus out of control. This differs from the #CD_Compromises per day measure, which would include every instance of CD compromise, no matter how many times per day. Note that the time of detection must allow for a response. For example, a log entry that is not monitored would not count as a detection until and unless some human read it, or some automated process triggered a recovery response or an alarm based on it. As it is often the case that multiple compromises may correlate to a single stabilize and/or report activity. These should nevertheless be measured individually so that distinct events may be later analyzed in aggregate from multiple angles.

This overlaps with the third goal of the Vulnerability Management group, that of supporting technology operations decision-making with respect to closing vulnerabilities. The difference is that not every incident to which a security group must respond is based on a known defect. Often the root cause is not known, and may in fact be authorized access not considered to be a vulnerability at the time of system design. The "time to stabilize" may that require innovative measures to adapt to an unforeseen circumstance for which there is no obvious solution.

The next scenario considered by this group was the extent to which a security program can assimilate intelligence (intel) on known attacks on other organizations to protect itself from similar attacks. In this scenario, it is assumed that an organization has a way to make use of such intelligence to determine whether their own systems are similarly vulnerable. However, unlike Scenario 9, externally reported intelligence does not necessarily mean that vulnerable systems are compromised. The challenge for a security program is to identify whether or not the organization is vulnerable, as well as whether or not a breach has occurred. If it is determined the organization is vulnerable, but no breach has occurred, the report should be folded into the vulnerability management metrics of Scenario 6 and the Operations Reports of Scenario 7. If it is determined that the device is vulnerable, and that vulnerability conflicts with the security program's current definition of a controlled device, it should be folded into the metrics of Scenario 9. If it is determined that a breach had occurred, it should be folded into the Security Breach metrics of Scenarios 1-3. Scenario 10 is thus represents a bridge between external information sharing programs and the internal security program.

Scenario 10. Information Sharing				
Metric	Measures	Frequency	Formula	Unit
Name				
Intel-Driven	Time_of_Intel_Report	Upon intel	If	minutes
Detection	#CDs_in_Scope_of_Intel	report	#Breaches_in_Scope_of_Intel	
	#Vulns_in_Scope_of_Intel	-	> 0, then	
	#Breaches_in_Scope_of_Intel		(Time_to_Identify_Breachess	
	Time_to_Identify_Vulns		- Time_of_Intel_Report)	
	Time_to_Identify_CDs		Elseif	
	Time_to_Identify_Breaches		#CDs_in_Scope_of_Intel	
			> 0, then	
			(Time_to_Identify_CDs -	
			Time_of_Intel_Report)	
			Elseif	
			#Vulns_in_Scope_of_Intel	
			> 0, then	
			(Time_to_Identify_Vulns -	
	12		Time_of_Intel_Report)	
Breach	#Breaches ¹²	Upon intel	# Breaches_Identified_via_	Percent
Detection	#Breaches_Identified_via_	report	Intel	
from	Intel ¹⁵	and	/ #Breaches	
Sharing		aggregate		
Intelligence		trends		_
CD	#Controlled_Devices ¹⁴	Upon intel	#Intel_Exploitable_CDs	Percent
Detection	#Intel_Exploitable_CDs	report	/ #Controlled_Devicess	
from		and		
Sharing		aggregate		
D		trends		D (
Defect	#Identified_Defects	Upon intel	#Intel_Exploitable_Detect	Percent
Detection	#Intel_Exploitable_Detects	report	/ # Identified_Detects	
from		and		
Sharing		aggregate		
		trends		

As indicators, metrics in this scenario can be used to determine the ability of the security program to assimilate information on new threats. An obvious example is a vendor report of a newly introduced security patch. To some extent, these may also be used to determine the utility of membership in intelligence sharing organizations or vendor-provide cyber threat intelligence services. If the majority of incidents in an organization seem to originate from external reports, it may also be indicative of the need for a more proactive security program.

Members of this group commented that for these program effectiveness measures to be realized, that automated detection techniques for both configuration drift (for Scenario 9) and signature search (as may be required in Scenario 10) may need to advance "an order of magnitude above" where we are today.

¹² This corresponds to the Breach Count in Scenario 1.

¹³ This would be a subset of Scenario 1's externally identified breaches, those that were reported via information sharing activities as opposed to other external reports, for example, customer complaints. ¹⁴ Measured as in Scenario 9.

¹⁵ Measured as Operations Reported Defects as in Scenario 7.

3.6. Cyber Security Risk

All the metrics discussed in the workshop may be generically referred to as security risk metrics. The group focused on risk of adopting new technology or evaluating an existing one. They adopted a case study approach to using security metrics to analyze a new technology introduction scenario. The example they chose was mobile device deployment.

Scenario 11. Mobile Device Deployment Decisions				
Metric Name	Measures	Frequency	Formula	Unit
Environmental	Threat_Actors	continuous	Map Geography and	Probability
	Threat_Actions		Type_of_Organization	of being a
	Known_Attack_Targets		to Threat_Actors	target
	Attack_Frequency		Threat_Actions	
	Industry_Alerts		Known_Attack_Targets	
	Type_of_Organization		Attack_Frequency	
	Geography		Industry_Alerts	
Mobile Device	Mobile_Device_Config_Drift	continuous	Ascertain confidence	Confidence
Management	Rate_of_Drift		level in control	level
(MDM)	Severity_of_Deviation		environment	
	Vendor_Vuln_Reports			
	Available_Patches			
Help Desk	Help_Desk_Trouble_Ticket_	continuous	No direct link can be	Probability
	Fields_Related_to_Device		assumed, but patterns	of device
	Authorized_Device_User_List		of help desk calls	misuse
	Authorized_Device_		related to mobile	
	Application_List		devices may be	
			analyzed and compared	
			with device usage	
			patterns	
Asset	Transactions_on_Assets_	continuous	No direct link can be	Probability
Monitoring	Affected_by_Device_		assumed, but patterns	of device
	Activity		of underlying asset	misuse
	Authorized_Device_User_List		movement (e.g. orders,	
	Authorized_Device_		payments, shipments,	
	Application_List		etc) using mobile	
	Expected_Device_Usage_		devices may be	
	Patterns		analyzed and compared	
	Actual_Device_Usage_		with device usage	
	Patterns		patterns	

As indicators, metrics in this scenario are expected to provide threat, control, and asset information to inform risk decisions with respect to using the new technology. With such a broad charter, they are more varied that those in previous scenarios. Because of the assumption that the technology is new, there is discomfort on relying on verification of secure configuration, but more emphasis on situational awareness over the entire end-to-end mobile landscape. In addition, thought the group noted that vendor reports are often a useful type of risk indicator, but that their interpretation is at risk due to their reluctance to adopt a common vocabulary with respect to security risk (such as the CVSS¹⁶). They

¹⁶ Mell, Ibid.

also note that data leakage metrics such as those in Scenario 5 are useful in identifying security risks in the Mobile environment.

3.7. Business Impact

Although the data breach cost group did specify metrics to quantify the business impact of a security breach, that group's focus was only on incidents. This business impact group more broadly considered the business impact of security in dimensions other than incidents. Not all security business impact is negative. For example, a security program may prevent losses due to operational mistakes as well as internal fraud. The group chose to focus on scenarios where security is obviously part of service delivery, and sought high-level metrics that would tie security metrics to customer expectations for business partnerships. In these relationships, customer typically have regulatory requirements to review vendor security, and vendors must therefore expend resources on not only on security programs but on outward-facing customer security assurance measures.

Scenario 12. Business Impact				
Metric	Measures	Frequenc	Formula	Unit
Name		y		
Reactive	#Different_Customer_	Per	(#Different_Customer_	Currency
Evidence	Security_Surveys *	contract	Security_Surveys *	
	Cost_of_Completing_		Cost_of_Completing_	
	Survey		Survey) +	
	Legal_Contract_		Legal_Contract_	
	Vetting_Costs +		Vetting_Costs +	
	<pre>#Days_to_Produce_</pre>		(#Days_to_Produce_	
	Evidence		Evidence *	
	Expected_Customer_		Expected_Customer_	
	Revenue_Per_Day		Revenue_Per_Day)	
Proactive	Cost_of_Producing_	Measure	(Cost_of_Producing_	Currency
Evidence	Independent_Security_	per	Independent_Security_	
	Audit_Report	contract,	Audit_Report +	
	Price_of_Agile_Security_	trend over	Price_of_Agile_	
	Response	time	Security_Response) /	
	#Customers_with_		#Customers_with_	
	Contractual_Security_		Contractual_Security_	
	Requirements		Requirements	
Parasite	Breach_Frequency	Measure	Breach_Frequency *	Currency
Load	Customer_Monthly_	per	Customer_Monthly_	
	Loss_Post_Breach	month,	Loss_Post_Breach *	
	Expected_Customer_	trend over	Expected_Customer_	
	Revenue Per Month	time	Revenue Per Month	

As indicators, metrics in this scenario should help executives decide how to champion security measures that will minimize customer security risk while maximizing profitability. It should help focus on auditable security measures on issues of importance to service delivery and customer satisfaction. As technology services reach maturity levels capable of sustained service delivery, they would be expected to find lower costs in proactive approaches to producing security evidence

4. Summary and Next Steps

Although workshop participants were provided with no parameters other than reminders of published reports with which most were familiar, they converged on units of measure for their assigned areas. For instance, workshop participants concluded that malware remediation effectiveness is measured best in currency while information security program effectiveness is best measured in time. Although these concepts are fundamental to technology management, they have not traditionally been highlighted in security metrics frameworks.

Workshop participants also concluded that vulnerability management is an exercise in prioritization and secure development is an exercise in correlation. While these two ideas are not particularly ground-breaking, neither do that map neatly onto current industry practice in security metrics. Rather, in most security metrics programs, security measures are assumed to be effective, and deviation from planned activities in vulnerability remediation and secure development are always considered weaknesses.

Etc etc – reviewers, please chime in with your own conclusions!

Appendix: Participants

Workshop Participants:

Jim Acquaviva Phil Agacoli Anthony Arrott Wade Baker Jennifer L. Bayuk Chris Berry Nathaniel Boggs Stephen Boyer Katherine Brocklehurst Krag Brotby David Charing Steve Christey Anton Chuvakin Myles Conley Earl Crane Keesha M. Crosby Fred Doolittle Steve Dotson Thomas Elegante Jussi Eronen Matthew H. Fleming Patrick M. Florer **Doug Foster** Summer C. Fowler Gary Golomb Grant Hansen Paula Hant Lance Hayden Josh Huston Jay Jacobs Andrew Jaquith Jack Jones Ramon Krikken Jason Leuenberger Pete Lindstrom Ivan Macalintal Michael Makstman Robert Markel Raffael Marty Adam Montville

nCircle Cox Communications Trend Micro Verizon Jennifer L. Bayuk, LLC Sensage Services **Columbia University BitSight Technologies** nCircle Brotby & Associates Canadian Imperial Bank of Commerce MITRE Gartner Auspices LLC National Security Staff, The White House Tri-Guard Risk Solution, LTD Chevron Information Technology Company Travelport **Zions Bancorporation CERT-FI** Homeland Security Studies and Analysis Institute Risk Centric Security, Inc. USG Carnegie Mellon University Cylance, Inc. Zions Bancorporation salesforce.com Cisco Exultium Verizon Silversky CXOWARE, Inc. Gartner Starbucks Spire Security, LLC Trend Micro Kaiser Permanente Virgin America pixlcloud Tripwire, Inc.

Appendix

DRAFT FOR REVIEW

Bill Telletier Alex Proskura Andy Rappaport Michael Roytman Bob Rudis Ben Sapiro Mahesh Saptarshi Aaron Schaub David F. Severski Lindsey Smith Wyman Stocks Salvatore J. Stolfo Morey Straus **Russell Thomas** Ryan Ward Evan Wheeler Suzanne Widup Walt Williams Mathew Woodyard Kai Yu

LMIG Auspicatus **CORE** Security Risk I/O Liberty Mutual The Dominion Symantec State Auto Insurance Seattle Children's Tripwire, Inc. NetApp Columbia University VMware George Mason University Avatier Corporation Omgeo Verizon Lattice Engines Zions Bancorporation Trend Micro

Facilitators:

Facilitator 1:	Data Breach Costs	Ben Shapiro
Facilitator 2:	Malware Identification	Patrick Florer
Facilitator 3:	Vulnerability Management	Andy Jaquith
Facilitator 4:	System Development Controls	Evan Wheeler
Facilitator 5:	Information Security Program	Matt Fleming
Facilitator 6:	Cyber Security Risk	Bob Rudis
Facilitator 7:	Business Impact	Myles Connelly

Lightning Talks:

Pete – Please list speakers with name and affiliation

Enterprise Panelists:

Jennifer Bayuk Fred Doolittle Steve Dotson Jennifer L Bayuk, LLC Chevron Travelport

Data Publisher Panelists:

Wade Baker	
Steve Christey	
Andy Jacquith	

Verizon MITRE SilverSky

Proceedings of Metricon 8

Metricon 8 Conference Committee:

Spire Security
Liberty Mutual
Lattice Engines
Verizon
Arctec Group

Metricon Steering Committee:

Jennifer Bayuk	Jennifer L. Bayuk, LLC
Dan Geer	InQTel
Andrew Jaquith	SilverSky