Measuring the Return on IT Security Investments

Matthew Rosenquist
Intel Information Security Strategist
Presentation based on Dec ’07 White Paper
With respect to the MiniMetricon audience, this is the condensed presentation. Full details are available in the whitepaper and blog discussions at communities.intel.com
This presentation is for informational purposes only. INTEL MAKES NO WARRANTIES, EXPRESS OR IMPLIED, IN THIS SUMMARY.

*Other names and brands may be claimed as the property of others.

Copyright © 2007, Intel Corporation. All rights reserved.
Business Challenge

Security programs strive to prevent undesirable events and/or lessening their effects.

Determining value is problematic, requiring measurement of events that did not happen and losses avoided.

To date, the industry has lacked accurate, quantitative methods for determining ROSI.
Business Challenge (cont.)

Most organizations rely on qualitative methods, which are vague at best

Difficultly to prioritize and compare against other capital investments

Lacks detailed financial figures that business decision makers demand

Determining value is critical for investment in an efficient security strategy
Solution

Method for estimating the number of future security incidents

Incident prediction accuracy can be validated!

Leverages historical data in similar environments to anticipate impacts in the target community

Avoids arbitrary risk/vulnerability/exposure analysis

Results showed a highly acceptable degree of accuracy, exceeding all other plausible methods
Solution (cont.)

Applicable to ‘reduce the occurrence’ type of controls and not applicable for ‘reduce the effects’ security programs

Requires significant incident trend data prior to and post implementation of the security program

Requires estimated average value of losses for events
Calculating the Rate of Occurrence

Initial Baseline Trend

New Security Program Benefits Begin

Reduced Incident Rate

Measuring the impact on the incident rate is the key

New Baseline Trend

Baseline Post Land Normalized
Pre/Post Value Determination

Predict value (pre-deployment to target environment)
- Identify limited control and treatment groups which are similar to the target group
- Measure the improved security of the treatment group against the control group baseline
- Apply the delta to target group and extrapolate to predict the value

Validate prediction/Measure Value (post-deployment to target environment)
1. Measure the actual improved security to the target group
2. Calculate value and compare to prediction
Calculating the Annual Loss Expectancy

Calculated the Single Loss Expectancy (SLE) for different environments

- Determine the relationship between incidents and loss
- Derive a single loss expectancy based on business management and finance estimations and downtime costs

The impact analysis determined the Annual Rate of Occurrence (ARO)

Annual Loss Expectancy (ALE) could then be calculated via $\text{ALE} = \text{SLE} \times \text{ARO}$
Case Study

Objective: demonstrate the value to management of 3 proposed security initiatives

Business Environment:

- Intel maintains one of the most complex manufacturing environments which is highly adverse to disruption
- Our factories and manufacturing sites are not identical; the greatly different environments are reflected in both the number of incidents and their impacts
- Proposed programs represented a significant financial investment as well as downtime for integration
- Programs were complementary and expected to reduce security incidents that cause disruption
Case Study

Study Group:
- Incident data (ex. virus and worm events) tracked for two years
- ~18,000 computers over 750 days (equivalent to 13 million computer-days)
- ~20 major locations around the world

Assumptions
- Many factors, known and unknown, drive incident numbers
- Targeting accuracy sufficient to make good business decisions
- Only tracked the data for major security programs and ignored the minor changes
- Purposely conservative in assessing loss and value
- Assumed a relationship between the security controls and the number and frequency of incidents
Results

Overall Effects of Security Program on Incident Occurrences

Forecasted Incidents

Data Confidence

Baseline

Program A

Program B

Program C

Public March 12, 2008
Results

Overall Progress: Incidents per Year
Actual and Estimated (shorter is better)

- Number of Incidents
- Year 1, Year 2, Year 3

Factory A
Factory B
Factory C
Results

Figure 5. The combination of security programs
Results

Security Programs Impact on Losses

- Annual Losses
- Annual Incidents

Baseline | Program A | Program A + Program B | Program A + Program B + Program C

Losses

Incidents
Results

Efficiency of Security Programs Based on Avoided Incidents.

<table>
<thead>
<tr>
<th>Security Programs</th>
<th>Incident Reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Program A</td>
<td>74%</td>
</tr>
<tr>
<td>Program B</td>
<td>91%</td>
</tr>
<tr>
<td>Program C</td>
<td>89%</td>
</tr>
<tr>
<td>Program A + B</td>
<td>97%</td>
</tr>
<tr>
<td>Program A + B + C</td>
<td>99%</td>
</tr>
</tbody>
</table>

Forecast of Predicted Incidents and Loss

<table>
<thead>
<tr>
<th>Security Programs</th>
<th>Incident Reduction</th>
<th>Days Between Incidents Increase</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Security Programs</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Program A</td>
<td>74%</td>
<td>4x</td>
</tr>
<tr>
<td>Program A + B</td>
<td>97%</td>
<td>45x</td>
</tr>
<tr>
<td>Program A + B + C</td>
<td>99%</td>
<td>396x</td>
</tr>
</tbody>
</table>
In Conclusion

Model is straightforward scientific method (nothing innovative, just taking a step forward)
Seeks a level of accuracy necessary to make good business decisions
Requires lots of data and test environments, but returns are impressive
Not a ‘silver bullet’. Only applicable to specific situations
Tough to argue with the accuracy
- 5 months 94% accurate (incident prediction)
- 12 months 87% accurate (incident prediction)