METRICS FOR DETECTING COMPROMISED SYSTEMS: IN DISTRIBUTED ENTERPRISE

Shivaraj Tenginakai
CONTEXT – SECURITY WITHOUT CONTROL

Security for Enterprise Consisting of

- Unsecured Systems
- Unsecured Network
- Unknown System Ownership
ENTERPRISE — THE “FORT”

Application Architecture
- Client Server

Infrastructure
- Data Center - the “Fort”

Security Goal
- Defend the Fort
ENTERPRISE— FORTS ARE EXPENSIVE

Capital Costs
- Real Estate
- Network
- Construction

Operational Costs
- Energy Cost
- Bandwidth Cost
- Real Estate Cost

Security
- Strength - Control
- Weakness – Known Location
ENTERPRISE — THE “COLLECTIVE”

Application Architecture
 • Peer-to-Peer

Infrastructure
 • Internet linked Personal Computers- the “Members”

Security Goal
 • Maintain “Member” integrity
ENTERPRISE – “COLLECTIVES” LACK CONTROL

Capital Cost
- None

Operational Cost
- None

Security
- Strength – no easy target
- Weakness – lack of control
COLLECTIVE – SECURITY GOAL

Maintain

- Operational Integrity
- Data Integrity
COLLECTIVE – INTEGRITY WITHOUT CONTROL

Unreliable

- Data
- Log files
- Operating System
- System Configuration
- Time
COLLECTIVE — ACHIEVABLE SECURITY

Not to “Defend” Members

But..

“Detect and Drop” Compromised Members
COLLECTIVE — SECURITY STRATEGY

If you cannot trust “what” a member says

then..

You need to rely on “how” they say it
MEMBERS – COMPROMISES

TYPES

- Structural
- Temporal
- Data
MEMBERS – POTENTIAL THREATS

TYPES

- Byzantine
- Non-Byzantine
MEMBERS – BYZANTINE COMPROMISES

CHALLENGES

• Defend against unknown

• Always on Alert

• Risk of immunization
MEMBERS – DETECTING COMPROMISES

BYZANTINE APPROACH

- Lamport
- Vogels
- Haeberlen

Collective

- Not Practical
MEMBERS – DETECTING COMPROMISES

NON-BYZANTINE APPROACH

- Know Correct Behavior
- Verify Expected vs. Actual Behavior
- Subject High Value Targets to Greater Audit
OPERATIONS – DEFINING CORRECTNESS

Using Operation Data

- Privacy
- Encryption
- Retention
- Compliance
OPERATIONS – DEFINING CORRECTNESS

Communication

- Message Pattern
- Message Order
METRICS—MESSAGE PATTERN

Message Counter (MC)

\[MC = f(MC_c, M_i, M_{o1}, M_{o2}, M_{o3}, \ldots) \]
Lamport Counter (LC)

\[LC = \max \{ LC_c, \text{Lamport Clock (} M_i, M_{o1}, M_{o2}, M_{o3}, \ldots) \} + 1 \]
MEASUREMENT– ARCHITECTURE
MEASUREMENT—DATA COLLECTION

Issues

- Noise
- Storage Cost
- Computation Cost
MEASUREMENT– NOISE

Solutions

- Time Series
- Prediction Bands
MEASUREMENT—METRIC STORAGE SIZE

per Metric per Member

• 4 integer points (16 bytes) every 5 minutes

• \[16 \times 288 = 4608 \sim 5\text{KB per day}\]

• \[5 \times 365 = 1825 \sim 2\text{MB per year}\]
MEASUREMENT—METRIC STORAGE COST

1 million members

- $1,000,000 \times 2\text{MB} = 2\text{TB}$

- $0.15 \times 2000 = $300/\text{month}$

- $300 \times 12 = $3600/\text{per year}$
MEASUREMENT—COST PER MEMBER

1 million members, 2 Metrics

- $7,200 * 2 ~ $15000/ per year

- $15000/1,000,000 = $.015/ per year
MEASUREMENT—TRUSTED NODE COST

Trusted Node Ratio = 1:10,000

Bandwidth Requirement = \(\frac{2 \times 16 \times 10,000}{5 \times 60} \) ~ 2KB/s

Number of Computations = \(\frac{2 \times 4 \times 10,000}{5 \times 60} \) ~ 270/s

Computations/Core ~ 70/s
MEASUREMENT—TOTAL COST

For 1 million members

Number of Trusted Nodes = 100 members
Trusted Node Instance = 1 Amazon EC2 Large
Amazon EC2 Large Instance = $1300/ per year (8 GB, 4 Core, 64-bit, 850 GB store)

Cost
• $1300 * 100 ~ $130,000/ per year
• $130,000/1,000,000 = $.13/ per year
• $.13 + $.015 = $.14/per year
IMPACT – COST

Cost

- Cheaper Than Datacenter
- Cheaper Than Cloud
IMPACT – ENVIRONMENT

- Lower Space
- Lower Carbon Footprint
IMPACT – RESOURCE REQUIREMENTS

- Not Computationally Intensive
- No Storage Required
- Can be computed by devices with limited capabilities
IMPACT — VS. LOG FILES

Cost

- Less Than Cost of 1 Software Engineer
- Economically Negligible
Security Metrics Enable Architecture and not just detect runtime issues.

Why do cars have brakes? Everyone says, 'So they can stop.' But the real reason cars have brakes is so they can go fast“

- Sara Gates
VP Sun Microsystems
IMPLEMENTATION—DEFINING CORRECTNESS

Static
 • Extending WSDL

Runtime
 • Member Set
IMPLEMENTATION— INTRODUCING RANDOMNESS

- Dummy Members
- Dummy Operations
- Dummy Messages
- Varying Operation Names
- Vary Operation Implementation
AUDIT—STRATEGY

- Random Tracer Bullet
- High Value Operations
AUDIT – GOAL

- Data Integrity
- Metric Value Correctness
EFFECTIVENESS - SCALING

- Jitter
- Scaling Model Validated
- Cost Model Validated
EFFECTIVENESS - CORRECTNESS

Complete Under Simulation

- Able to absorb “tweaks”
- Not yet validated in real world
EFFECTIVENESS – UNRESOLVED ISSUES

- Enabling Compromised Members
- Dealing with compromised member set
QUESTIONS?

Shivaraj Tenginakai
shivaraj@sarithi.com