Proceedings of
The Eighth Annual Meeting of
Metricon

Friday, March 1, 2013
San Francisco, CA

Metricon is a forum for lively, practical discussion in the area of security metrics.

DRAFT FOR PARTICIPANT REVIEW
Please use Word Track Changes and Comments features or just sent comments via email to:

jennifer@bayuk.com
Metricon 8

Table of Contents

1. Executive Summary .. 4
2. Scope and Approach .. 4
3. Key Metrics .. 6
 3.1. Data Breach Costs .. 6
 3.2. Malware Identification .. 8
 3.3. Vulnerability Management .. 9
 3.4. System Development Controls ... 11
 3.5. Information Security Program ... 13
 3.6. Cyber Security Risk .. 16
 3.7. Business Impact .. 17
4. Summary and Next Steps ... 18
Appendix: Participants .. 19
 Workshop Participants .. 19
 Facilitators ... 20
 Lightning Talks .. 20
 Enterprise Panelists ... 20
 Data Publisher Panelists ... 20
 Metricon 8 Conference Committee .. 21
 Metricon Steering Committee .. 21
1. Executive Summary

The goal of Metricon 8 was to bring together practitioners in security metrics, review both the state of the art and the state of the practice in security metrics, and leverage the collective wisdom of participants to take the first steps toward a taxonomy or framework for metrics in areas that are of significant value to enterprise security programs.

The event consisted of direction-setting discourse, a panel consisting of leading metrics data publishers, a panel consisting of enterprise security practitioners, short talks on emerging trends, and facilitated group sessions focused on metrics of common interest. The outcome was a short list of key metrics in these areas:

- Data Breach Costs
- Malware Identification
- Vulnerability Management
- Systems Development Controls
- Information Security Program
- Cyber Security Risk
- Business Impact

This report includes the scope and approach of the Metricon 8 workshop, as well as detailed descriptions of the metrics identified as key indicators of effective information security. An appendix lists workshop participants and roles.

The goal was achieved in that the collective wisdom of participants was leveraged to take the first steps toward a taxonomy or framework for metrics in areas that are of significant value to enterprise security programs. However, these were baby steps that left the security metrics community profoundly aware of how large the gap is between the state of the art in security metrics and the metrics needed by enterprise security practitioners.

2. Scope and Approach

The day began with a discussion of goals and objectives led by the program chair. Participants self-identified areas of interest, loosely based on a list provided in the program agenda. Facilitator-led break-out groups aligned with these areas of interest, and these produced an initial set of metrics. The plan for each facilitator-led group session was threefold:

1. Create a series of scenarios associated with topic areas.
2. Define a set of metrics that will best inform decisions regarding these scenarios.
3. Review published data to see what we can pull from it and conduct a gap analysis.
Elements expected to compose the metrics definitions were listed in the program:

- **Name:** Descriptive label
- **Measure:** The unit of quantitative measurement(s).
- **Scenarios:** Describe the scenarios where the metric would be useful.
- **Frequency:** Propose time periods for collection of data that is used for measuring changes over time.
- **Formula:** Describe the calculation to be performed that results in a numeric expression of a metric.
- **Indicators:** Provide information about the meaning of the metric and its performance trend.

After completing steps 1 and 2, the groups reported their preliminary results to in a general session augmented by an “enterprise” panel with CISO-level enterprise security experience. First the panel commented on the outcome, then the discussion opened to all participants. Groups were expected to use this feedback to refine their metrics lists.

The idea was to incorporate an evaluation of existing industry data sources with an eye toward identifying alignments, gaps, and overlaps as these reports relate to the needs of the enterprise security professional. To this end, this enterprise panel was followed by a series of “lightning talks” on emerging issues, so named because they were limited to 5-10 minutes each. Following the lightning talks, a diverse panel of metrics data publishers were asked to describe what is in their reports and to discuss how they expect enterprise security practitioners to make use of the data in the report to make decisions.

Topics covered in the lightning talks were:

- **Pete: please fill in lightning talk topics**

The members of the data publishing panel represented firms who collect and publish data in three different segments of the security breach lifecycle. Each had a different concern about how their data was being used. The segments and corresponding concerns are briefly summarized as follows:

- **Independent publisher of vulnerabilities and threats**
 - Budget and clarity constraints prevent us from covering every single vulnerability, so what criteria should we use to determine inclusion?
 - We need to evolve with technology, but how do we know when we make changes that these will not diminish utility to our subscribers?

- **Security service provider publisher of incident metrics in progress**
 - Do we correctly recognize a compromise?
 - How do we know we have set severity levels appropriately?

- **Security forensics firm publisher of post-mortem data on security breaches**
 - What data can we collect that will lead us to root cause?
 - How can we use data on compromised customers to help others?

1 These key features of metrics were adapted from NIST SP 800-55.
The resulting discussion was open to all participants. A major topic of discussion was the burden on practitioners to absorb results from multiple reports that share no common references on methodology or metrics terminology. One insightful comment, that it was admitted has occasionally surfaced on the securitymetrics.org mail list, was on the need for the Center of Disease Control (CDC) of information security breaches. It was observed that breach information has sometimes been aggregated from disparate sources and that doing this the wrong way can be very misleading.

3. Key Metrics

The key metrics produced by each group are below organized by the scenario faced by a security practitioner. The scenario is briefly described in text, and supported by a table that lists several of the elements expected to compose the metrics definitions as defined in the workshop program. Each scenario is followed by a description of what the metrics would indicate to a decision-maker. As defined in the program, these indicators provide information about the meaning of the metric and its potential performance trends.

3.1. Data Breach Costs

This group focused on ways to measure the cost of a security breach. They examined indicators of impact, whether initial, downstream or cascading. They also identified characteristics of data breach events that would require additional losses to be calculated. Measureable attributes of these subsets of data breach loss calculations are listed in a table corresponding to each category. Note that the losses described in the first table represent the minimum set of attributes that are common to all breach losses, and so losses for data breaches in subsequent tables should be added to those in the first table. Of course, any given breach may have unique loss characteristics, so it is to be expected that real loss calculations would combine items from multiple tables among others not listed.

<table>
<thead>
<tr>
<th>Scenario 1. All Security Breaches</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metric Name</td>
</tr>
<tr>
<td>Breach Count</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Forensics</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Investigate</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

2 To indicate a single, multi-word, measure description, underlines are used instead of spaces to connect the words.
As indicators, metrics in this scenario can be used to calculate the *operational cost* of a data security breach, independent of the value of information compromised. Several elements of this scenario are therefore reusable (and therefore referenced) by scenarios created by other workshop groups. Note that the first metric, the number of breaches wherein each breach is assigned an incremental number, serves as a tracking mechanism to ensure that all appropriate data is collected per breach. The distinction between internally and externally detected breaches is relevant because breaches that are externally detected may not easily be mapped to compromised systems. This situation also surfaces in Scenario 10.

A unique scenario in data breaches are breaches that result in the compromise of personally identifiable information (PII). PII breach losses have unique characteristics, and the level of activity in each of the loss calculation areas will be dependent on the jurisdiction of the multiple government entities that regulate such events.

<table>
<thead>
<tr>
<th>Scenario 2. PII Data Breaches</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metric Name</td>
</tr>
<tr>
<td>Insurance</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Notification</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>PII Remediation</td>
</tr>
<tr>
<td>Regulatory</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

As indicators, metrics in this scenario can be used in cost-benefit analysis decisions with respect to cyber security insurance and notification technology alternatives. In combination with Scenario 1, it can be used to justify the cost of PII security measures. Note that it is not assumed that all breached will be revealed to the public or will results in data misuse that leads to fraud. However, breaches that have these consequences will have additional loss attributes. These are captured in the scenario of potential downstream impact.
As in, and in combination with, Scenarios 1 and 2, these indicators can be used in cost-benefit analysis decisions with respect to cyber security insurance and/or protective measures. They may also be used to evaluate the cost-benefit of settling rather than trying or defending cyber security court cases.

This group also discussed reasons why an enterprise should collect data breach metrics even if the breach was not PII or Public. These involved:

- Determining risk tolerance
- Driving investment
- Planning for robustness, considerations of scale
- To calculate the cost/benefit of diverting funds reserved for notification into prevention

The enterprise panel commented that they would like to see measurements that would be necessary to measure these dimensions, but the group left that task to future work.

3.2. Malware Identification

A significant part of the discussion on malware focused on how to best allocate resources between different technology approaches. It is well known that different anti-virus vendors have different false positive rates, and combinations of technologies are often used to identify malware. Hence, one scenario was devoted to measures with which to compare alternative technologies, and another focused on measures of effectiveness.

Scenario 4. Signature-Based Blacklist Malware Blocking

<table>
<thead>
<tr>
<th>Metric Name</th>
<th>Measures</th>
<th>Frequency</th>
<th>Formula</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Block Benefit</td>
<td>Number_of_Blocks, Malware_Hit_Rate, Averted_Remediation^3</td>
<td>Per day</td>
<td>Number_of_Blocks * Hit_Rate * Averted_Remediation</td>
<td>Currency</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Opportunity Block</td>
<td>Number_of_Blocks, False_Positive_Rate, Block_Opportunity_Cost^4</td>
<td>Per day</td>
<td>Number_of_Blocks * False_Positive_Rate * Block_Opportunity_Cost</td>
<td>Currency</td>
</tr>
</tbody>
</table>

^3 See Scenario 1 for a breakdown of remediation costs.
As indicators, metrics in this scenario can be used in cost-benefit analysis decisions with respect to signature-based blocking technology. The product that had the highest malware hit rate and lowest false positive rate at the lowest Block Technology Cost should be preferred.

<table>
<thead>
<tr>
<th>Metric Name</th>
<th>Measures</th>
<th>Frequency</th>
<th>Formula</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Egress Monitors</td>
<td>#Devices_Hitting_Known_Bad_Sites #Gateways_Used_for_Sensitive_Data_Exfiltration</td>
<td>Per instance</td>
<td>Existence test</td>
<td>True/False</td>
</tr>
<tr>
<td>External Reports</td>
<td>Presence_of_Employee_Data_Found_on_Known_Malware_Operator_Sites</td>
<td>Per instance</td>
<td>Existence test</td>
<td>True/False</td>
</tr>
</tbody>
</table>

Metrics in this scenario are an independent indicator that can be used to determine whether or not an existing combination of anti-malware technology is effective. Of course, where these metrics yield “true” results, the instance of data leakage must be investigated to determine the root cause, which may or may not be malware. Regardless, where data is known to have been compromised, these metrics should be folded into the Security Breach metrics described in Scenarios 1-3.

The group also discussed the inadequacy of using blocks as a unit of measure in Scenario 4 because multiple blocks may be due to a single piece of malware on a single device, or due to the bad behavior of a single user. The concepts that block rates should be substituted for blocks was discussed, but the concept was not fully fleshed out.

3.3. Vulnerability Management

The mission of this group differs from that of the malware identification group in that it was focused on the mitigation rather than the identification of vulnerabilities (or “vulns”). The idea is that there are always vulnerabilities, and metrics should be used to make decisions about which ones to fix. They also faced the scenario wherein multiple vulnerabilities should be fixed, but scarce resources require decisions on the priority of one fix over another. The vulnerability management group had three types of decisions in mind:

4 See Scenario 1 for a breakdown of opportunity costs.
• Focus on most important systems
• Use budgets effectively
• Measure good IT operations

The last is important because traditional vulnerability management metrics count the number of vulnerabilities found in systems. Yet if this approach is used and no vulnerabilities are found, systems cannot be declared to be invulnerable because they tests may not include vulnerabilities that are in the systems, and the test themselves often yield false negatives.\(^5\) As these measures cannot be practically applied to claim that security is good, they have been mocked as “badness-ometers,” a scale on which every measure is bad, with no measure of good.\(^6\) Nevertheless, the group had a hard time coming up with prioritization metrics without including badness-ometers, and the first two goals are merged into one scenario in the table below.

<table>
<thead>
<tr>
<th>Metric Name</th>
<th>Measures</th>
<th>Frequency</th>
<th>Formula</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>System Value</td>
<td>System_Transaction_ Revenue Loss_Avoidance(^7)</td>
<td>Daily</td>
<td>Sum of measures per system(^8)</td>
<td>Currency per System List</td>
</tr>
<tr>
<td>Sensitivity</td>
<td>System_Connects_to_Sensitive_Data</td>
<td>Daily</td>
<td>Existence test</td>
<td>System List</td>
</tr>
<tr>
<td>Vulnerability Level</td>
<td>CVSS Scores(^7) Environmental_Factors</td>
<td>Per vulns</td>
<td>Use CVSS Scores, which specify Environmental_Factors to map onto a three-level ordinal scale</td>
<td>One of: (High, Medium, Low)</td>
</tr>
<tr>
<td>Badness-ometer</td>
<td>Total_Number_Target_Systems Target_Systems_with_Known_Vulns Target_Systems_with_Severe_Vulns</td>
<td>As testing schedule permits</td>
<td>Match Total_Number_Target_Systems to System Value and Sensitivity lists sorted by currency and data sensitivity, filter by Target_Systems_with_Severe_Vulns, breaking ties with higher Vulnerability Levels</td>
<td>Ordered list of systems</td>
</tr>
</tbody>
</table>

\(^7\) Measured using assumptions that the vulnerability was exploited and corresponding baseline losses from Scenario 1.

\(^8\) The team acknowledges that the definition of “system” needs work, it may actually amount to application or business technology process.

Note that it is important to measure the total number of target systems in the badness-meter metric because this may be used to ensure that no system will escape the measurement process. As indicators, metrics in this scenario can be used to set priorities for vulnerability remediation. Note that there is no assumption that remediation exist, nor that the remediate activity chosen will be effective. Some aspects of remediation effectiveness metrics are addressed in the Security Program Effectiveness Scenario number 9.

The third goal, that of supporting technology operations decision-making with respect to closing vulnerabilities, emerged as a unique scenario, though not fully fleshed out. Where vulnerabilities are so numerous that allocated resources cannot cover the highest, then the metrics from Scenarios 1-3 in combination with assessments on incident likelihood and remediation effectiveness may be used to evaluate the cost-benefit of additional resource allocation. This obviously covers more ground than vulnerability management, and is essential to facilitate vulnerability management. It reflects the group’s conclusion that good security is not likely in the absence of sound technology operations.

3.4. System Development Controls

This group looked at systems and software development lifecycle (generically referred to hereafter as “SDLC”) security control decisions. The idea was to come up with a few metrics that show which development activities result in fewer security incidents.

<table>
<thead>
<tr>
<th>Scenario 7. Activities to Include in SDLC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metric Name</td>
</tr>
<tr>
<td>Requirements #Identified_Defects & #Severe_Defects & #False_Positives Cost</td>
</tr>
<tr>
<td>Code Review #Identified_Defects & #Severe_Defects & #False_Positives Cost</td>
</tr>
<tr>
<td>Abuse Case Tests #Identified_Defects & #Severe_Defects & #False_Positives Cost</td>
</tr>
<tr>
<td>Static Analysis #Identified_Defects & #Severe_Defects & #False_Positives Cost</td>
</tr>
<tr>
<td>Dynamic (& Fuzz) Analysis #Identified_Defects & #Severe_Defects & #False_Positives Cost</td>
</tr>
</tbody>
</table>
As indicators, metrics in this scenario can be used in two ways. The first is to add up all currency units to identify the total cost (in terms of the staff time, technology, and technology support devoted to the activity) of software security efforts per developer or per software release. The second, and more informative, would be to correlate software security improvement with activities typically recommended to be performed in the system development lifecycle. If different software projects use subsets of the scope of available activities, then the projects can be compared to see if some combinations are more effective overall than others. These metrics may also indicate developer and development manager quality, as they are reused in Scenario 8.

<table>
<thead>
<tr>
<th>Scenario 8. SDLC Assessment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metric Name</td>
</tr>
<tr>
<td>Security Training</td>
</tr>
<tr>
<td>Software Management</td>
</tr>
<tr>
<td>Impact</td>
</tr>
</tbody>
</table>

As indicators, metrics in this scenario can be used to correlate software security quality metrics from Scenario 7 with developer training programs and software management organizations, potentially to support decisions for developer training and organizational improvement. These metrics may also be used to assign developers and software organizations to security-critical system components.

Discussion of this topic included potential strategies to maximize the cost-benefit of using independent penetration tester to minimize the dependency on the (in)experience of

10 Measured as in the Operations Reports of software security defects metrics of Scenario 7.
11 Where discovered during a breach, measured using the cost of security breach metrics from Scenarios 1 thru 3. Where no breach has been known to occur, measured using the Remediation metrics of Scenario 1.
individual testers. There were also concerns about the software development environment itself that remain to be addressed. For example, does software development in the cloud increase the potential for accidentally or maliciously introduced vulnerabilities? Moreover, it was acknowledged that, as these indicators are all defect-driven, they are all badness-ometers, and thus cannot be used to declare that software is secure, just that it is not known to be not secure.

3.5. **Information Security Program**

This group operated on the principal that the effectiveness of an information security program should be measured by outcome. This typically means adequate protection of information and infrastructure and prevention of security breaches. Hence, the group chose to focus on incident handling rather than controls to determine effectiveness. It is assumed that a design for security exists, that controls correspond to the design, and that the program has a method of identifying deviation from those controls. The team considered two scenarios, that of control effectiveness, and that of control improvement through information sharing.

<table>
<thead>
<tr>
<th>Scenario 9. Control Effectiveness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metric Name</td>
</tr>
<tr>
<td>Compromised Controlled Devices</td>
</tr>
<tr>
<td>Mean Time to Detect</td>
</tr>
<tr>
<td>Time to Triage</td>
</tr>
<tr>
<td>Time to Stabilize</td>
</tr>
<tr>
<td>Time to Report</td>
</tr>
</tbody>
</table>
Note that the count of compromised devices, although counted daily, is not a point of
time, end of day count. Instead, it is the number of controlled devices that were in a
compromised state at any time during the day. This indicates an unintended change in a
security attribute, the controlled device is thus out of control. This differs from the
#CD_Compromises per day measure, which would include every instance of CD
compromise, no matter how many times per day. Note that the time of detection must
allow for a response. For example, a log entry that is not monitored would not count as a
detection until and unless some human read it, or some automated process triggered a
recovery response or an alarm based on it. As it is often the case that multiple
compromises will be detected in a short amount of time, multiple compromises may
correlate to a single stabilize and/or report activity. These should nevertheless be
measured individually so that distinct events may be later analyzed in aggregate from
multiple angles.

This overlaps with the third goal of the Vulnerability Management group, that of
supporting technology operations decision-making with respect to closing vulnerabilities.
The difference is that not every incident to which a security group must respond is based
on a known defect. Often the root cause is not known, and may in fact be authorized
access not considered to be a vulnerability at the time of system design. The “time to
stabilize” may that require innovative measures to adapt to an unforeseen circumstance
for which there is no obvious solution.

The next scenario considered by this group was the extent to which a security program
can assimilate intelligence (intel) on known attacks on other organizations to protect itself
from similar attacks. In this scenario, it is assumed that an organization has a way to
make use of such intelligence to determine whether their own systems are similarly
vulnerable. However, unlike Scenario 9, externally reported intelligence does not
necessarily mean that vulnerable systems are compromised. The challenge for a security
program is to identify whether or not the organization is vulnerable, as well as whether or
not a breach has occurred. If it is determined the organization is vulnerable, but no breach
has occurred, the report should be folded into the vulnerability management metrics of
Scenario 6 and the Operations Reports of Scenario 7. If it is determined that the device is
vulnerable, and that vulnerability conflicts with the security program’s current definition
of a controlled device, it should be folded into the metrics of Scenario 9. If it is
determined that a breach had occurred, it should be folded into the Security Breach
metrics of Scenarios 1-3. Scenario 10 is thus represents a bridge between external
information sharing programs and the internal security program.
Table: Scenario 10. Information Sharing

<table>
<thead>
<tr>
<th>Metric Name</th>
<th>Measures</th>
<th>Frequency</th>
<th>Formula</th>
<th>Unit</th>
</tr>
</thead>
</table>
| Intel-Driven Detection | Time_of_Intel_Report
#CDs_in_Scope_of_Intel
#Vulns_in_Scope_of_Intel
#Breaches_in_Scope_of_Intel
Time_to_Identify_Vulns
Time_to_Identify_CDs
Time_to_Identify_Breaches | Upon intel report | If
#Breaches_in_Scope_of_Intel
> 0, then
(Time_to_Identify_Breaches - Time_of_Intel_Report)
Elseif
#CDs_in_Scope_of_Intel
> 0, then
(Time_to_Identify_CDs - Time_of_Intel_Report)
Elseif
#Vulns_in_Scope_of_Intel
> 0, then
(Time_to_Identify_Vulns - Time_of_Intel_Report) | minutes |
| Breach Detection from Sharing Intelligence | #Breaches\(^{12}\)
#Breaches_Identified_via_Intel\(^{13}\) | Upon intel report and aggregate trends | # Breaches_Identified_via_Intel
/ #Breaches | Percent |
| CD Detection from Sharing | #Controlled_Devices\(^{14}\)
#Intel_Exploitable_CDs | Upon intel report and aggregate trends | #Intel_Exploitable_CDs
/ #Controlled_Devices | Percent |
| Defect Detection from Sharing | #Identified_Defects\(^{15}\)
#Intel_Exploitable_Defects | Upon intel report and aggregate trends | #Intel_Exploitable_Defect
/ #Identified_Defects | Percent |

As indicators, metrics in this scenario can be used to determine the ability of the security program to assimilate information on new threats. An obvious example is a vendor report of a newly introduced security patch. To some extent, these may also be used to determine the utility of membership in intelligence sharing organizations or vendor-provide cyber threat intelligence services. If the majority of incidents in an organization seem to originate from external reports, it may also be indicative of the need for a more proactive security program.

Members of this group commented that for these program effectiveness measures to be realized, that automated detection techniques for both configuration drift (for Scenario 9) and signature search (as may be required in Scenario 10) may need to advance “an order of magnitude above” where we are today.

\(^{12}\) This corresponds to the Breach Count in Scenario 1.

\(^{13}\) This would be a subset of Scenario 1’s externally identified breaches, those that were reported via information sharing activities as opposed to other external reports, for example, customer complaints.

\(^{14}\) Measured as in Scenario 9.

\(^{15}\) Measured as Operations Reported Defects as in Scenario 7.
3.6. Cyber Security Risk

All the metrics discussed in the workshop may be generically referred to as security risk metrics. The group focused on risk of adopting new technology or evaluating an existing one. They adopted a case study approach to using security metrics to analyze a new technology introduction scenario. The example they chose was mobile device deployment.

<table>
<thead>
<tr>
<th>Metric Name</th>
<th>Measures</th>
<th>Frequency</th>
<th>Formula</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Environmental</td>
<td>Threat_Actor, Threat_Actions, Known_Attack_Targets, Attack_Frequency, Industry_After, Type_of_Organization, Geography</td>
<td>continuous</td>
<td>Map Geography and Type_of_Organization to Threat_Actors, Threat_Actions, Known_Attack_Targets, Attack_Frequency, Industry_After</td>
<td>Probability of being a target</td>
</tr>
<tr>
<td>Mobile Device Management (MDM)</td>
<td>Mobile_Device_Config_Drift, Rate_of_Drift, Severity_of_Deviation, Vendor_Vuln_Reports, Available_Patches</td>
<td>continuous</td>
<td>Ascertained confidence level in control environment</td>
<td>Confidence level</td>
</tr>
<tr>
<td>Help Desk</td>
<td>Help_Desk_Trouble_Ticket_Fields_Related_to_Device, Authorized_Device_User_List, Authorized_Device_Application_List</td>
<td>continuous</td>
<td>No direct link can be assumed, but patterns of help desk calls related to mobile devices may be analyzed and compared with device usage patterns</td>
<td>Probability of device misuse</td>
</tr>
<tr>
<td>Asset Monitoring</td>
<td>Transactions_on_Assets_Affected_by_Device_Activity, Authorized_Device_User_List, Authorized_Device_Application_List, Expected_Device_Usage_Patterns, Actual_Device_Usage_Patterns</td>
<td>continuous</td>
<td>No direct link can be assumed, but patterns of underlying asset movement (e.g. orders, payments, shipments, etc) using mobile devices may be analyzed and compared with device usage patterns</td>
<td>Probability of device misuse</td>
</tr>
</tbody>
</table>

As indicators, metrics in this scenario are expected to provide threat, control, and asset information to inform risk decisions with respect to using the new technology. With such a broad charter, they are more varied that those in previous scenarios. Because of the assumption that the technology is new, there is discomfort on relying on verification of secure configuration, but more emphasis on situational awareness over the entire end-to-end mobile landscape. In addition, thought the group noted that vendor reports are often a useful type of risk indicator, but that their interpretation is at risk due to their reluctance to adopt a common vocabulary with respect to security risk (such as the CVSS16). They

16 Mell, Ibid.
also note that data leakage metrics such as those in Scenario 5 are useful in identifying security risks in the Mobile environment.

3.7. Business Impact

Although the data breach cost group did specify metrics to quantify the business impact of a security breach, that group’s focus was only on incidents. This business impact group more broadly considered the business impact of security in dimensions other than incidents. Not all security business impact is negative. For example, a security program may prevent losses due to operational mistakes as well as internal fraud. The group chose to focus on scenarios where security is obviously part of service delivery, and sought high-level metrics that would tie security metrics to customer expectations for business partnerships. In these relationships, customer typically have regulatory requirements to review vendor security, and vendors must therefore expend resources on not only on security programs but on outward-facing customer security assurance measures.

<table>
<thead>
<tr>
<th>Metric Name</th>
<th>Measures</th>
<th>Frequency</th>
<th>Formula</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Legal_Contract_Vetting_Costs + #Days_to_Produce_Evidence</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expected_Customer_Revenue_Per_Day</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parasite Load</td>
<td>Breach_Frequency * Customer_Monthly_Loss_Post_Breach * Expected_Customer_Revenue_Per_Month</td>
<td>Measure per month, trend over time</td>
<td>Breach_Frequency * Customer_Monthly_Loss_Post_Breach * Expected_Customer_Revenue_Per_Month</td>
<td>Currency</td>
</tr>
</tbody>
</table>

As indicators, metrics in this scenario should help executives decide how to champion security measures that will minimize customer security risk while maximizing profitability. It should help focus on auditable security measures on issues of importance to service delivery and customer satisfaction. As technology services reach maturity levels capable of sustained service delivery, they would be expected to find lower costs in proactive approaches to producing security evidence.
4. Summary and Next Steps

Although workshop participants were provided with no parameters other than reminders of published reports with which most were familiar, they converged on units of measure for their assigned areas. For instance, workshop participants concluded that malware remediation effectiveness is measured best in currency while information security program effectiveness is best measured in time. Although these concepts are fundamental to technology management, they have not traditionally been highlighted in security metrics frameworks.

Workshop participants also concluded that vulnerability management is an exercise in prioritization and secure development is an exercise in correlation. While these two ideas are not particularly ground-breaking, neither do that map neatly onto current industry practice in security metrics. Rather, in most security metrics programs, security measures are assumed to be effective, and deviation from planned activities in vulnerability remediation and secure development are always considered weaknesses.

Etc etc etc – reviewers, please chime in with your own conclusions!
Appendix: Participants

Workshop Participants:

Jim Acquaviva
nCircle
Phil Agacli
Cox Communications
Anthony Arrott
Trend Micro
Wade Baker
Verizon
Jennifer L. Bayuk
Jennifer L. Bayuk, LLC
Chris Berry
Sensage Services
Nathaniel Boggs
Columbia University
Stephen Boyer
BitSight Technologies
Katherine Brocklehurst
nCircle
Krag Brotby
Brotby & Associates
David Charing
Canadian Imperial Bank of Commerce
Steve Christey
MITRE
Anton Chuvakin
Gartner
Myles Conley
Auspices LLC
Earl Crane
National Security Staff, The White House
Keesha M. Crosby
Tri-Guard Risk Solution, LTD
Fred Doolittle
Chevron Information Technology Company
Steve Dotson
Travelport
Thomas Elegante
Zions Bancorporation
Jussi Eronen
CERT-FI
Matthew H. Fleming
Homeland Security Studies and Analysis Institute
Patrick M. Florer
Risk Centric Security, Inc.
Doug Foster
USG
Summer C. Fowler
Carnegie Mellon University
Gary Golomb
Cylance, Inc.
Grant Hansen
Zions Bancorporation
Paula Hant
salesforce.com
Lance Hayden
Cisco
Josh Huston
Exultium
Jay Jacobs
Verizon
Andrew Jaquith
Silversky
Jack Jones
CXOWARE, Inc.
Ramon Krikken
Gartner
Jason Leuenberger
Starbucks
Pete Lindstrom
Spire Security, LLC
Ivan Macalintal
Trend Micro
Michael Makstman
Kaiser Permanente
Robert Markel
Virgin America
Raffael Marty
pixelcloud
Adam Montville
Tripwire, Inc.
Facilitators:

Facilitator 1: Data Breach Costs
Facilitator 2: Malware Identification
Facilitator 3: Vulnerability Management
Facilitator 4: System Development Controls
Facilitator 5: Information Security Program
Facilitator 6: Cyber Security Risk
Facilitator 7: Business Impact

Lightning Talks:

Pete – Please list speakers with name and affiliation

Enterprise Panelists:

Jennifer Bayuk
Fred Doolittle
Steve Dotson

Data Publisher Panelists:

Wade Baker
Steve Christey
Andy Jaquith
Metricon 8 Conference Committee:

Pete Lindstrom, Chair Spire Security
Bob Rudis Liberty Mutual
Walt Williams Lattice Engines
Chris Porter Verizon
Gunnar Peterson Arctec Group

Metricon Steering Committee:

Jennifer Bayuk Jennifer L. Bayuk, LLC
Dan Geer InQTel
Andrew Jaquith SilverSky