



# **Unequaled Visibility and Productivity**

# **Model Based Metrics**

Amnon Lotem
April 2008



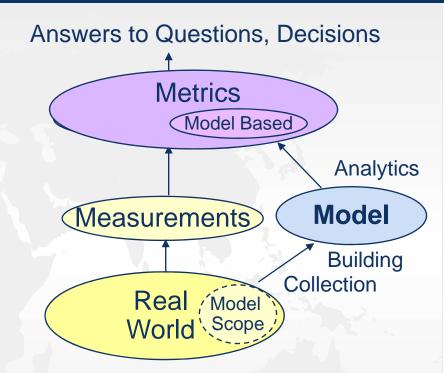
## **Agenda**

- What are Model Based Metrics?
- Why do we need them?
- Examples
- Field experience
- The Security Model
- Advantages
- Challenges
- Conclusions





#### **Model Based Metrics**

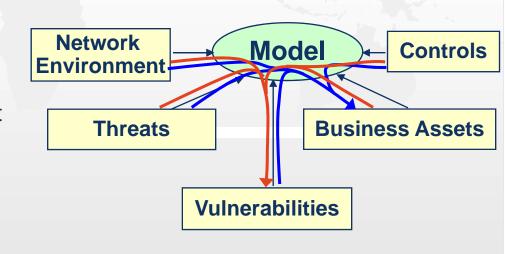

 Metrics which are based on the analysis of a model

#### Model

- A representation of some aspects of the real world (scope)
- Enables understand and predict behavior

## Required Capabilities

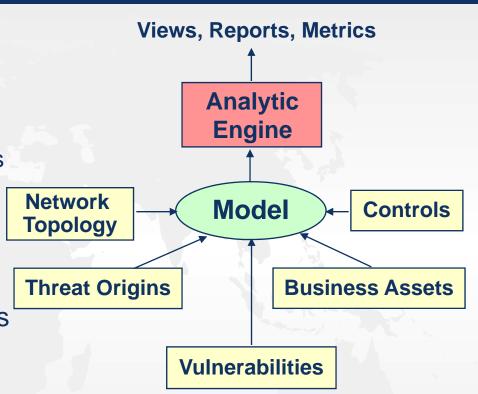
- Data collection
- Model building
- Model analytics





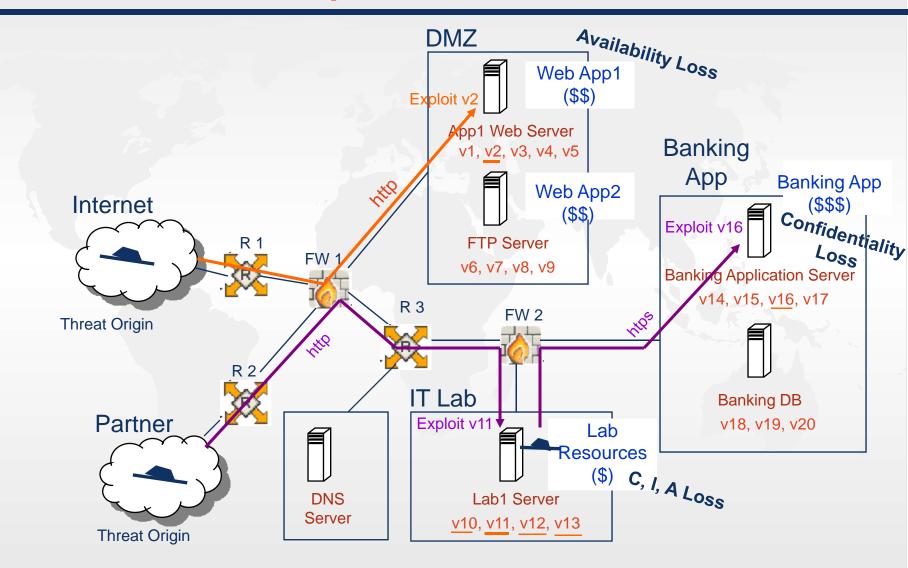

#### Do We Need Model Based Metrics?

- Models are widely and reliably used in other fields
- They enable to associate between several disciplines and simulate behavior
- Security involves many disciplines
- Associating between them is essential for answering security questions:
  - Is our current security environment strong enough? or,
  - What is our current risk level?
  - What are the most urgent vulnerabilities we need to fix?





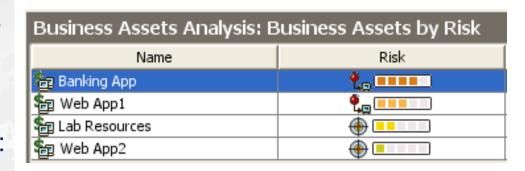


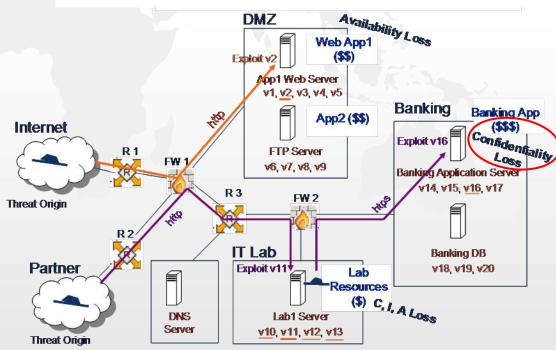


### **Our Approach**

- Represent in one model:
  - Network topology and hosts
  - Vulnerabilities
  - Controls (Firewalls, IPS, ...)
  - Business Assets and Threat Origins
- Use Analytic engine for predicting capabilities and behavior
- Extract Views, Reports, and Metrics
- Applicable for:
  - Enterprise vulnerability management
  - Risk management
  - Policy Compliance of firewalls
  - Change Management






#### **A Network Example**

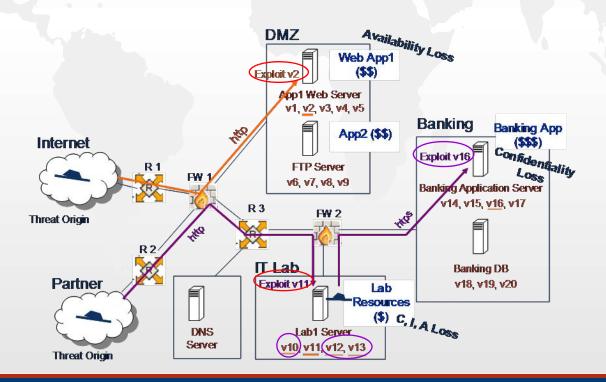





#### **Extracted Metrics - Business Assets Risk**

- Assigning risks to business assets
- e.g., Banking App:
  - Business Asset Classification:
    - Confidentiality loss => Very High damage
  - Attack analysis:
    - Possible
    - Likelihood: Medium
  - Risk:
    - Likelihood \* Impact
    - => High
- Basis for:
  - Effort prioritization
  - Overview of Risks and Trends



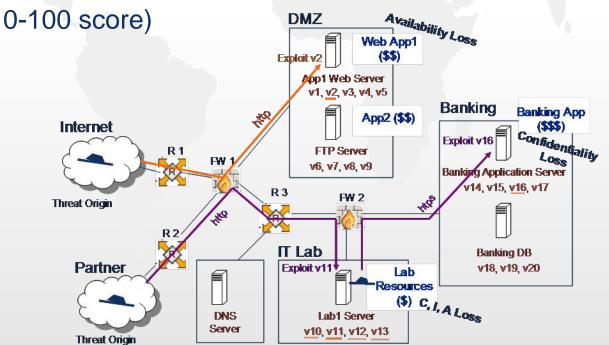





### **Extracted Metrics - Vulnerability Exposure**

#### Exposure

- Q: Is the vulnerability exploitable from the threat origins? How may attack steps are required?
  - Direct one attack step is sufficient (an entry point)
  - Indirect at least two attack steps
  - Inaccessible no attack is possible




|      | ·            |  |
|------|--------------|--|
| Vul. | Exposure     |  |
| v1   | Inaccessible |  |
| v2   | Direct       |  |
| v3   | Inaccessible |  |
| v4   | Inaccessible |  |
| v5   | Inaccessible |  |
| v6   | Inaccessible |  |
| v7   | Inaccessible |  |
| v8   | Inaccessible |  |
| v9   | Inaccessible |  |
| v10  | Indirect     |  |
| v11  | Direct       |  |
| v12  | Indirect     |  |
| v13  | Indirect     |  |
| v14  | Inaccessible |  |
| v15  | Inaccessible |  |
| v16  | Indirect     |  |
| v17  | Inaccessible |  |
| v18  | Inaccessible |  |
| v19  | Inaccessible |  |
| v20  | Inaccessible |  |



### **Extracted Metrics - Vulnerability Imposed Risk**

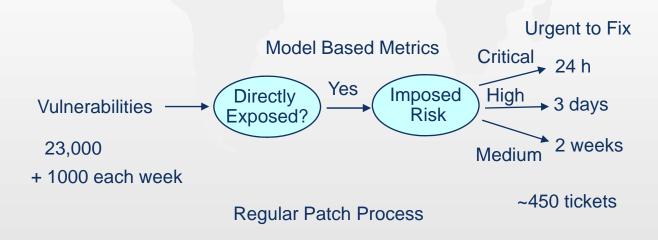
- Imposed Risk
  - The damage expectancy of the vulnerability
  - Based on attack paths in which the vulnerability instance is exploited
  - Numeric Value (likelihood \* damage)
  - Can be translated into a scale (e.g., a 5-level scale or



| <u> </u> |          |  |
|----------|----------|--|
| Vul.     | Imposed  |  |
|          | Risk     |  |
| v1       |          |  |
| v2       | High     |  |
| v3       |          |  |
| v4       |          |  |
| v5       |          |  |
| v6       |          |  |
| v7       |          |  |
| v8       |          |  |
| v9       |          |  |
| v10      | Low      |  |
| v11      | Critical |  |
| v12      | Low      |  |
| v13      | Medium   |  |
| v14      |          |  |
| v15      | 4/       |  |
| v16      | Critical |  |
| v17      |          |  |
| v18      |          |  |
| v19      |          |  |
| v20      |          |  |



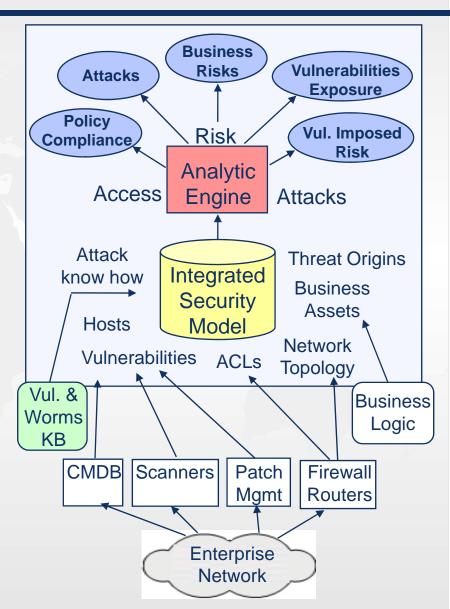
### A Strong Mechanism for Ranking Vulnerabilities


- Identifying the relatively small group of vulnerabilities that enable attacks from external threat origins
- Usually less than 1-2% of the total vulnerabilities (feasible to fix in a reasonable time)
- Daily or alert-based process of fixing new risky and directly exposed vulnerabilities that are identified
- At the management level interesting metrics are:
  - What is the current number / rate of directly exposed vulnerabilities
  - How many of them are at high risk
  - What is the trend?

|       |      | <b>↓</b>     | <b>↓</b> |
|-------|------|--------------|----------|
|       | Vul. | Exposure     | Imposed  |
| Inac: |      |              | Risk     |
|       | v1   | Inaccessible |          |
|       | v2   | Direct       | High     |
|       | v3   | Inaccessible |          |
|       | v4   | Inaccessible |          |
|       | v5   | Inaccessible |          |
|       | v6   | Inaccessible |          |
|       | v7   | Inaccessible |          |
|       | v8   | Inaccessible |          |
|       | v9   | Inaccessible |          |
|       | v10  | Indirect     | Low      |
|       | v11  | Direct       | Critical |
|       | v12  | Indirect     | Low      |
|       | v13  | Indirect     | Medium   |
|       | v14  | Inaccessible |          |
|       | v15  | Inaccessible |          |
|       | v16  | Indirect     | Critical |
|       | v17  | Inaccessible |          |
|       | v18  | Inaccessible |          |
|       | v19  | Inaccessible |          |
|       | v20  | Inaccessible |          |



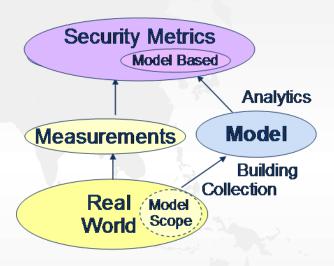
#### Field Experience - An Example


- Medium size organization
- Uses our product for vulnerability management on a daily basis
- 1,500 Servers
- 10 External threats: Internet, Partners
- ~100 Business Assets
- 23,000 Vulnerabilities; 1,000 new vulnerabilities each week
- A daily process of fixing directly exposed vulnerabilities
  - SLA is based on imposed risk: 24h, 3 days, two weeks
- ~450 tickets with relatively high priority





#### The Security Model and its Environment


- Represents the enterprise network and related security data
- Assembled from a wide variety of data sources
- Refreshed regularly
  - e.g., every night
  - Using automated tasks
- The Analytic Engine is invoked for computing access, attacks, and risk
- Extraction of Metrics and Views





#### **Model Based Metrics - Advantages**

- Extend the set of security metrics that can be maintained
  - Adding metrics that are too complex to compute or measure
- Can relate to predicted behavior (possible, impossible, likely to happen, ...)
- What-if mode examine what will be the effect of a proposed change on the security
- Enable root cause analysis
- Filter noise in raw data
  - As the model merges and correlates data from various sources
- Continuous extraction of the metrics





### **Model Based Metrics - Challenges**

- The model must be accurate enough for the metrics to be trustworthy
  - How this can be measured?
  - How do we assure that?
  - How do we calibrate the computations?
- How do we represent and consider unknown factors?
  - Unknown threat origins, non-reported vulnerabilities, ...
- Can we combine model-based metrics with traditional metrics?
- Best practices and standards:
  - Model based metrics are not there yet. Should be



#### **Conclusions**

- Model based metrics increase our insight on security status and required actions
- They are already in use in some security management processes (vulnerability management, access compliance)
- As metrics experts, we should:
  - Explore the new opportunities for measuring and assessing the security status based on security models
  - Develop the metrics and measurements required for tuning the models and assuring their accuracy

Thank You