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Information markets, Markov Decision Processes and game theory un-
derlie a new quantitative approach to cybersecurity risk assessment.

1. INTRODUCTION

Organizations in both the private and public sectors have been struggling to deter-
mine the appropriate investments to make for protecting their critical intellectual
property. As a result, cybersecurity investment strategies at the macro level (over-
all strategic investment in system- or enterprise-wide protection) and the micro
level (how to allocate the tactical security elements across components of a system
or enterprise) have typically been implemented without guidance from a rigorous,
quantitative risk assessment and mitigation methodology. Simple questions such
as "Are we investing enough?", "What security will have the most impact?" and
"How much better is our security now?" are currently difficult to answer [Sanders
et al. 2006].
Quantitative Evaluation of Risk for Investment Efficient Strategies (QuERIES)

is a novel computational approach to quantitative cybersecurity risk assessment
that was designed to answer such questions. It is based on rigorous and quanti-
tative techniques drawn from computer science, game theory, control theory and
economics.
Preliminary experiments have corroborated the QuERIES methodology, suggest-
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ing that it is a broadly applicable alternative to red teaming, black hat analysis,
and other decision support methodologies which have previously been tried for
cybersecurity related risk assessment.1
To date, QuERIES has been focused on the problem of protecting critical Depart-

ment of Defense intellectual property (IP), in which the loss of one copy of the IP
is catastrophic, as opposed to consumer IP, in which the loss of multiple copies can
be tolerated as long as sufficient revenue is maintained. Weapons systems designs,
chip designs, complex computer software and databases containing personal and
financial information are examples of the former. Digital music, video, consumer-
grade software and electronic books are examples of the latter. This focus results in
a specific formulation of the attack/protect economic model. In general, however,
QuERIES can be applied to other attack/protect scenarios.
To illustrate the QuERIES methodology and how it can be applied in a given

software protection context, consider the challenge of assessing the strength of par-
ticular protections applied to a particular software asset. The protections are meant
to prevent reverse engineering attacks in which an adversary seeks to obtain critical
IP from the software.
The QuERIES methodology in this case involves the following elements:

(1) Model the Security Strategy - Develop an attack/protect economic model cast
in a game theoretic context. Parameters in this economic model represent ob-
jective quantities such as the economic value of the IP (the protected software
asset) to the IP owner; the cost of developing the IP by an adversary and; the
cost of obtaining the IP through other possible means. Other critical parame-
ters of the model relate details of the protection map (a detailed security plan)
of the specific protections applied to the IP asset;

(2) Model the Attacks - Use the protection map and knowledge of reverse engineer-
ing methodologies to build an attack graph represented as a Partially Observ-
able Markov Decision Process (POMDP) [Russell and Norvig 2002] and;

(3) Quantify Both Models - Quantify parameters used in both models by performing
a controlled red team attack against the protected IP and then using another
red or black hat team to conduct an information market [Wolfers and Zitzewitz
2004] for estimating the parameters of the POMDP. Compute the POMDP’s
optimal policies and feed those into the attack/protect economic model.

Once both models have been evaluated, it is possible to synthesize multiple derived
quantities relevant to risk assessment.
For example, given a class of adversaries, Figure 1 shows one such derived quan-

tity, namely the probability distribution of the time (in man-hours) required to
successfully reverse engineer protected software. We call this distribution the Prob-
ability of Reverse Engineering, denoted by PR. This distribution, as explained
further in Sections 2.5 and 2.6, assumes that the attacker does not have an a priori
model of the attack graph or protection scheme. The attacker is therefore learn-
ing the protection scheme through trial and error. The probability distribution is

1A “red team” attack involves attackers who have little or no knowledge of a systems’ internal
protection. A “black hat” analysis involves attackers who have access to design details of the
internal protection.
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Fig. 1. These plots show various distributions and time-dependent quantities that
QuERIES can obtain. These are discussed in more detail in the text.

generated by launching multiple independent attacks under this assumption. In
Section 2.6, this same protection scheme will be attacked by an adversary who has
insider knowledge and does know the actual optimal attack graph corresponding to
the protection scheme.
Figure 1 also depicts some of the possible outcomes and analyses that QuERIES

can produce. The top right plot shows the discounted value for the critical IP - its
value decreases over time as technology advances and as its mission criticality may
diminish. This is an estimate of the value of the IP over time and can be specified
by the IP asset owner as appropriate.
The bottom left plot shows the results of two different analyses an attacker could

use to decide when to stop an attack, namely “open” and “closed” loop decision
algorithms. The closed loop analysis approach is similar to American Options
pricing algorithms used to decide when to exercise an option before its expiration
date [Chalasani et al. 1999]. The algorithm for computing that decision strategy is
based on dynamic programming and related to classical stochastic control theory.
It is a closed loop decision procedure because it uses the fact that an attack has
not been successful up to a certain time and factors in the future costs and optimal
decisions that will be made in the future. The plot of the closed loop strategy

Approved for Public Release: AFRL/WS-07-2145, September 2007



4 · L. Carin, G. Cybenko and J. Hughes

in the lower left of the figure shows the expected benefit minus cost of continuing
the attack given that it has not succeeded up to that time. The other approach
depicted in the bottom left of the figure is the open loop analysis which compares
the difference between the expected benefit and the expected costs at each time
where the policy is to stop the attack when the difference becomes negative.
These two analyses are presented to illustrate two different decision strategies

attackers could use. There are a variety of other possible decision strategies. Note
however that the results of different analyses could be quite different. Using the
closed loop decision algorithm, if the attacker has not succeeded after about 151
hours their optimal decision is to stop the attack because they have reached the tail
of the distribution. The probability of defeating the protections using that strategy
is about 0.25 and the maximum cost (defined as the expected cost of a successful
attack before time t ≤ 151 plus the expected cost of failure at time t = 151) is
about $7895 which can be compared with the $30,000 initial value of the IP. That
is, 0.25*30000 is 7500 which is roughly the expected benefit of the attack up to 151
hours (which is actually 7519) .
The bottom right plot compares the expected costs and expected benefits (ex-

pected IP value over time) of conducting an attack up to the specified time plotted
on the horizontal axis. This is an “open loop” analysis in that it does not factor
in the attacker continuing to press the attack having passed the “fat” part of the
probability distribution and thereby working for a diminishing likelihood of returns.
The difference between the benefit and cost in the bottom right plot is shown in
the bottom left plot.
The probability distribution PR that QuERIES obtains can be the basis for

different kinds of analyses as this discussion illustrates. Knowledge of PR before
and after certain protections are added or improved can help answer fundamental
questions such as: “How much better protected is my IP?”; “What is the right level
of investment in its protection?”; “What is the cost/benefit analysis for adding more
protections?”
Examples of such before and after analyses are presented in Section 2.6. In

addition, it is possible to model attackers who have knowledge of the software
protections explicitly as well as attackers who are attacking without such a priori
information.
QuERIES therefore is a methodology for addressing two of the key challenges:

—How can the probability distribution, PR, be effectively and cost-efficiently ob-
tained?

—What are the ways in which PR can be used for business relevant cybersecurity
risk assessment?

Because QuERIES is agnostic about how PR is actually used most appropriately
by a decision maker, we introduced the above derivative analyses solely to illustrate
the fundamental role that it plays.
We believe that a major innovation of QuERIES is a methodology for estimat-

ing the fundamental distribution PR. Traditional approaches for evaluating the
strength of cybersecurity technologies have not been able to effectively produce the
probability distribution of the time to defeat a protection [Sanders et al. 2006;
Anderson and Schneier 2005; Cybenko 2006]. For example, formal methods (that
Approved for Public Release: AFRL/WS-07-2145, September 2007
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is, logical analyses of a design) can only verify that a design has certain desirable
properties but are silent on the properties of an actual implementation and de-
ployment in a complex operational environment. Red team attacks as traditionally
conducted result in a very sparse sampling of the distribution, PR, often producing
only a single costly sample - namely that the attack took so much time, so many
resources and used a certain approach. Black hat analyses typically will suggest
multiple possible attack paths and associated tools required, yet can only offer gross
estimates of attack times and costs.
The rest of this paper is organized as follows. Section 2 is a review of the major

concepts and steps of the QuERIES methodology. Additional details of related
work along with QuERIES results, derivations and experiments are documented in
reports available from the authors.

2. THE QUERIES METHODOLOGY

The steps in the QuERIES methodology are described next. As previously noted,
the three major elements of the methodology are:

(1) Model the Security Strategy;
(2) Model the Attacks and;
(3) Quantify Both Models.

These components are broken down into a series of 7 steps that are illustrated in
Figure 2.

2.1 Identify Critical IP Assets and Threats Against Them

Users of the QuERIES methodology must first identify their critical IP assets and
the threats against them through analysis of their various missions or strategic
plans. In general, critical IP assets can be found in hardware, software or data and
have the following characteristics:

(1) the IP embodies knowledge and information obtained at significant cost to the
IP owner;

(2) an adversary desires to obtain the IP;
(3) an adversary would value the IP at roughly the same level as the asset owner

does.

The fact that IP was expensive for the owner to obtain or develop is not in and
of itself enough to characterize it as critical. QuERIES in particular assumes that
IP under consideration is desired by the adversary. We also assume that the IP
has already been developed and so the cost of developing it is sunk and cannot be
recovered by the owner.
We will be using a relatively objective measure of the value of such an asset,

namely the cost to develop it. Those costs can usually be estimated relatively
reliably using programmatic information although in many cases the development
of advanced systems leverages a broad technology base that may have been already
expensed elsewhere. Our notation for the owner’s cost of developing the IP is
denoted by CIP .
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Results

Fig. 2. The steps of the QuERIES methodology and their supporting technologies.
These technologies are established and well understood. QuERIES combines them
in a novel way.

By definition, an adversary values critical IP at CIP as well, but the development
cost to an adversary, denoted by CD, could be smaller if generally available enabling
technology has made it more economical to develop today as opposed to in the
past. Advances in software development technology, basic science, semiconductor
fabrication processes and other factors could make development today less expensive
for example.
Threats against critical IP could include careless handling of the IP by insiders

with access, deliberate mishandling of the IP by malicious insiders, stealing unpro-
tected copies of the IP, stealing protected copies of the IP and reverse engineering
stolen copies of the IP.
Hence the first step of the QuERIES method identifies:

—CIP : the value of the IP to the asset owner and adversary;
—CP : the cost of protecting the IP, per unit, together with a possible amortization
of the protection technology’s cost over the number of units to be protected;

—CD : the cost to the adversary of developing the IP ab initio;
—PS : the probability of stealing the unprotected IP based on historical data for
Approved for Public Release: AFRL/WS-07-2145, September 2007
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so they will try to obtain it.

If you do not protect the IP, the adversary is incentivized to develop the IP when CIP - CD > PS CIP - CS.
If you do protect the IP, the adversary is incentivized to develop the IP when CIP - CD > PR CIP - CR.

Fig. 3. In this example, the QuERIES economic model is based on a simple game
theoretic formulation. In the game, the IP owner can protect or not protect and the
adversary can develop the IP ab initio or attempt to steal or reverse engineer the
IP. Although the case in which the adversary chooses to do nothing is listed, the
definition of critical IP is that they will try to obtain the IP. The consequences of
various moves are discussed in both the figure commentary and text of the paper.

similar IP for example;
—CS : the cost of stealing the unprotected IP based on historical data for similar
IP.

These quantities could be estimated for different adversaries who have different
technology bases from which to recreate the IP and different capabilities for stealing
the unprotected IP.

2.2 Construct the Attack/Protect Economic Model

The QuERIES attack/protect economic model is based on a game with two players
- the protector (you) and the attacker (your adversary). Game theory is a mature
discipline which was originally rigorously developed to support strategic, military
and policy decision making [von Neumann and Morgenstern 1944; Isaacs 1999]. It
has subsequently been extended and widely used for business and economic appli-
cations as well [Catterjee and Samuelson 2001].
The two basic game moves available to the protector (you) are: protect critical

IP or not protect IP. The game tables shown in Figure 3 shows the protector’s
moves in the columns labeled “No IP Protection” and “IP Protection.” Different
protection technologies are possible for a given IP so that in practice several moves

Approved for Public Release: AFRL/WS-07-2145, September 2007



8 · L. Carin, G. Cybenko and J. Hughes

are possible for the protector, one for each type of protection being considered.
In this example, we are modeling three possible attacker moves: “No Action,”

“Develops IP” and “Steals IP.” By the definition of critical IP, the adversary will
try to either develop or steal the IP. "No Action" is not a viable move. For each
combination of moves by the protector and attacker, we write down an expression
for the resulting loss or gain in the corresponding cell of the game table. When an
adversary attempts to steal or reverse engineer critical IP, there is some probability
that they will succeed, namely PS and PR respectively.
The QuERIES analysis of the game is based on the following player objectives.

The IP asset owner wants to maximize the minimal advantage they have over the
adversary. The advantage is, by definition, the difference between the owner’s value
and the adversary’s value because the owner already has the IP. The adversary
wants to maximize their value without factoring in the owner’s value because they
want the IP and the owner already has it. The IP asset owner moves first because
they get to decide whether to deploy protections or not when the critical IP is
fielded.
If the IP owner (you) does not protect the IP, the adversary will attempt to steal

the IP for realistic parameter values. Specifically, we assume the probability of
successfully stealing the IP, PS is close to 1 and the cost of stealing it, CS , is small
so that PS ∗ CIP − CS > CIP − CD where the cost to the adversary of developing
the IP, CD is typically about the same as CIP . That is, the cost to the adversary of
developing the IP ab initio is about the same as the cost to the owner of developing
the IP originally.
On the other hand, if the IP owner does protect the IP, the adversary will attempt

to reverse engineer the protected IP when PR ∗ CIP − CR > CIP − CD and will
develop the IP ab initio otherwise.
The IP owner must take into account their cost of protecting the IP so as not to

have a Pyrrhic victory by making the cost of protection more expensive to them
than the cost of obtaining the IP for their adversary.
Consequently, the IP owner should protect the critical IP asset if both

CD − CP > (1− PS) ∗ CIP + CS

and

(1− PR) ∗ CIP + CR − CP > (1− PS) ∗ CIP + CS .

The above two inequalities have similar interpretations. The right sides of both
inequalities are the same and represent the relative advantage the owner has over
the adversary when the IP owner does not protect the IP asset, namely the difference
between the owner’s value, CIP and the adversary’s expected value if they choose
to steal the IP, PS ∗CIP−CS , which we have seen they will do in realistic situations.
The left sides of the inequalities are the IP owner’s relative advantages if the owner
chooses to protect for the cases that the adversary develops or reverse engineers the
IP, respectively.
This economic analysis requires several quantities: CP , CD, PS , CS and CIP

which can be estimated from available empirical data. The quantities which cannot
be readily estimated from historical data are PR and CR. Estimating these quan-
tities and related derivatives is the objective of the next few steps of the QuERIES
Approved for Public Release: AFRL/WS-07-2145, September 2007
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Fig. 4. A POMDP formulation of attacks against protected IP requires specifica-
tion of the POMDP structure. Two example structures are depicted in the top of
this figure. In addition to the underlying structure, the specification of a POMDP
requires transition probabilities corresponding to the various action possible, costs
and observables. The bottom part of the figure depicts examples of different tran-
sition probabilities that correspond to three different actions taken in a state.

methodology.

2.3 Construct the POMDP

The purpose of the present and the next two steps is to obtain effective estimates of
the remaining quantities used in the economic model, namely the probability, PR,
and cost, CR, of defeating the protected IP asset. As discussed previously, these
quantities are fundamental to risk assessment questions but have been difficult to
obtain previously.
The QuERIES’ approach to estimating the probabilities and costs of successful

attacks begins by first formulating the possible attacks based on the given protec-
tion map in terms of a graph that represents the adversary’s multi-stage decision
processes and states of knowledge. Attack graphs have been used effectively in
computer security studies [Sheyner et al. 2002] and QuERIES advances the con-
cept in several fundamental ways. Perhaps the most fundamental contribution that
QuERIES makes to cybersecurity attack modeling is the introduction of partially
observable Markov decision processes (POMDP) [Kaelbling et al. 1998] to the
field. A POMDP is a powerful tool for modeling a single agent operating in an en-
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vironment. POMDP’s have been used successfully in a variety of applications, the
most notable recent example being the 2005 DARPA Autonomous Vehicle Grand
Challenge [Thrun 2006]

A QuERIES POMDP is defined by a finite set of states, one of which the agent
occupies at any given time. In the QuERIES attack modeling framework, the
underlying states represent the attacker’s progress towards defeating the IP protec-
tions, of which there are typically several. The start state corresponds to none of
the protections being defeated and the end state corresponds to successful reverse
engineering of the IP, which may or may not require defeating all of the protections
used.

An attacker takes actions while attempting to defeat the protections that have
been applied to the critical IP. Possible actions could include executing the code
in a debugging environment and modifying the executable in various ways. One
consequence of such actions is that the attacker moves from state to state (possibly
remaining in the same state). Given an attacker’s action, the probability of transit-
ing from one state to another is modeled by a Markov process, specifically a finite
Markov chain in this case. That is, for every action, there is a Markov chain labeled
by that action that specifies the state transition probabilities resulting from that
action. Another consequence, that depends on the action taken and the current
state, is that a cost is incurred.

Such a modeling formalism is called a Markov Decision Process (MDP). MDP’s
have been comprehensively studied in the context of control theory, operations
research and economics for many years. This has resulted in many theoretical
results and computational algorithms for MDPs [Feinberg and Shwartz 2002].

While MDP’s provide the basic modeling formalism, they are not quite enough.
The problem is that at any given time, an attacker typically does not know what
state he is in (the states are not directly “observable”). In the QuERIES context,
the attacker may not know what protections have been deployed, which protec-
tions have been defeated, and is uncertain about what penalties may have been
introduced through his previous actions. The attacker does have access to certain
observations, which are a stochastic function of the last action taken and the current
state occupied.

MDP’s in which states are not directly observable can be modeled as Partially
Observable Markov Decision Processes or POMDPs [Kaelbling et al. 1998]. The
reader is referred to the extensive literature on MDP’s and POMDP’s for details of
those technologies [Feinberg and Shwartz 2002; Kaelbling et al. 1998; Thrun 2006].

The output of this step of the QuERIES methodology is a POMDP structure
which encapsulates the procedural structure of possible attacks against protected
IP. By structure, we mean the collection of possible actions, states and observables
that can arise in an attack. The complete specification of the POMDP must also
include the various state transition probabilities, costs associated with taking cer-
tain actions in certain states and the probabilities of making certain observations
conditioned on being in a true state which is not directly observable by the attacker.
These quantities are estimated through controlled red team attacks combined with
subsequent information or decision markets described in the next step.
Approved for Public Release: AFRL/WS-07-2145, September 2007
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Market Question: What is the expected cost in man hours of an analysis 
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Fig. 5. This figure shows the results of using an information market with market
scoring rules to estimate a probability distribution collectively by a second red
team or black hat group. Market scoring is a recently developed mechanism that
is effective for estimating distributions over large configuration spaces.

2.4 Execute Information Markets

A fundamental challenge in cybersecurity risk assessment has always been estimat-
ing the probability and cost of successful attacks against proposed and deployed
security technologies. Traditional approaches to risk assessment have been to con-
duct red team and black hat exercises. This type of actual or virtual exploitation
does not provide enough information to obtain quantitative probability distribu-
tions or cost estimates.
The QuERIES economic model for IP protection previously described requires

these probabilities and costs as well. However, the approach QuERIES uses is quite
different and we believe far more powerful than red team or black hat attacks alone.
As described in the previous step, QuERIES represents attacks using partially ob-

servable Markov decision processes (POMDP). At first blush, it would seem that the
problem of generating PR and CR has been made more difficult because a POMDP
involves a large number of probabilities and costs corresponding to each state in
the underlying MDP. A fundamental insight of QuERIES is that the underlying
POMDP parameters can be obtained from red teams but not in the traditional
way. Using information or decision markets, it is possible to estimate with high
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accuracy the underlying POMDP parameters and then, as described in the next
step, compute optimal policies for the POMDP and then perform simulations on
those policies to obtain the probability distribution of PR.
Information markets are mechanisms designed for participants to interact with

each other using simple exchanges of structured information. The outcome of an
information market is a collective, not consensus, estimate of a quantity. Informa-
tion markets have recently received a great deal of attention in the popular press
[Surowiecki 2004] and technical literature [Hanson 2003; Gneiting and Raftery ; Roll
1984; Chen and Plott ]. They are increasingly being used in business to forecast
sales, market trends and complex system behaviors.
Examples of information markets are traditional financial markets like stock and

commodities exchanges in which participants buy and sell shares, options and vari-
ous derivatives. The only information effectively exchanged by participants in those
markets are the prices at which they are willing to buy and sell various instruments
and in what quantities. Those prices are the markets’ estimate of the value of the
instrument, such as the valuation of a company or the future prices of commodities
such as oil, orange juice or lumber products [Roll 1984].
Pari-mutuel betting, such as at horse race tracks, also involves the exchange of

information only through the tote board odds for a race. The odds have a natural,
intrinsic interpretation as probabilities for how the different horses will perform.
Information markets have been also been established for political races, current

events, financial news, weather and unique events [IEM ; Intrade.com ]. Their effec-
tiveness, if properly constituted, is not controversial today [Surowiecki 2004]. The
proper design of mechanisms for estimating probabilities, probability distributions
and other quantities of interest is a small but rapidly growing industry [HSXRe-
search ]. Mechanisms have been discovered to effectively estimate probability distri-
butions over large combinatorial spaces in which the number of individual elements
can be extremely large [Hanson 2003; Gneiting and Raftery ].
QuERIES uses information market mechanisms to estimate the QuERIES’ attack

model POMDP parameters. A market red team is constituted but its purpose is not
to simply defeat a protection. Instead, the market red team is given the protected
IP and then participates in several information markets, each of which estimates
different probability distributions relevant to the POMDP. The market red team
can inspect the protected IP, attempt to defeat it in various ways and otherwise
educate itself on the details of the protections. The market is real. There are
financial incentives for making correct predictions of probabilities, just as in pari-
mutuel horse race betting.
Another red team, different from the market red team ideally, then actually

conducts a traditional red team exercise to determine what is “correct” in order
that payouts can be determined. The fundamental outcome of the market are
the estimates of probability distributions and costs, not the specific traditional red
team exercise outcome. Using horse racing as an analog, running a race once merely
generates a single sample from the probability distribution over the horses about
which one will win. The information market premise is that if the horse race could
be run repeatedly, the number of times that individual horses would win would
converge to the number predicted by the odds.
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Fig. 6. The graph show a probability distribution for the time to break critical IP
protections through reverse engineering obtained from the QuERIES methodology.
A mixture of Weibull distributions has been fit to the data for illustrative purposes.

QuERIES uses information markets in this way to estimate the probability dis-
tributions underlying the POMDP and uses the final traditional red team attack to
“run the horse race” to determine payouts. Having an objective outcome and real in-
centives to perform well is considered critical to the effectiveness of the information
market concept.
We have conducted several red team information markets to validate this ap-

proach as it is applied by QuERIES in the cybersecurity risk assessment problem
domain. In fact, the various quantitative results shown in this paper were obtained
by the QuERIES methodology using actual red team information markets.

2.5 Compute POMDP’s Optimal Policies

Once the QuERIES information market has produced estimates of the POMDP’s
probabilities and costs, standard techniques for finding optimal policies of POMDP’s
can be used to determine the optimal action to take in each state to minimize a cost
objective [Kaelbling et al. 1998]. A common objective to optimize is cost which, in
the case of protecting critical IP, can be measured in time to defeat the protections.
The optimal policy prescribes the action to take in each state of the POMDP

to minimize the expected cost/time. A simulation of the POMDP that produces
multiple runs using the optimal policy in every step will generate an empirical prob-
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ability distribution of times to defeat the protections assuming that the attacker
has knowledge of the optimal attack policy. Figure 1 showed, by contrast, the prob-
ability distribution of successful attack times for an attacker who does not know
the underlying structure (attack graph based on the protection map) or optimal
policy of the POMDP before starting the attack.
By sampling from the policy space, it is possible to generate empirical distribu-

tions corresponding to suboptimal policies which represent less skilled or capable
adversaries. For example, it is possible to randomly sample the second and/or third
best policies in addition to the optimal policy to gain insight into different threat
classes.
By the same token, solely sampling from the optimal policy produces a distribu-

tion for PR that corresponds to the most skilled attacker relative to the red team
skill level specified for the information markets.

2.6 Evaluate Attack/Protect Model

The previous steps of the QuERIES methodology have produced optimal and sub-
optimal attack policies which can be used to generate a variety of probability dis-
tributions for the time (and therefore cost) of successfully defeating the protections
applied to critical IP.
The probability distribution PR can be the basis for different kinds of analyses.

Possible risk-related derivatives of PR are, for example:

—The expected cost of defeating the protection:
∞∑

i=0

ciPR(i)

where ci is the cost of the ith man-hour in the attack;
—The expected time to defeat the protection:

∞∑

i=0

iPR(i);

—The expected cost of defeating the protection given that the protection is defeated
at or before time t:

∑t
i=0 ciPR(i)∑t
i=0 PR(i)

—The optimal decision time for an attacker to quit if they have not yet succeeded;
—The associated probabilities of success, costs and time under the above optimal
decision policy.

As illustrated previously in Figure 1, there are “open loop” and “closed loop”
strategies for executing attacks assuming that an attacker has some knowledge of
PR. The open loop strategy does not take into account the fact that an attack has
not succeeded as it progresses. The closed loop strategy does and the algorithmic
basis for computing this strategy is similar to pricing an American-style financial
option [Chalasani et al. 1999]. If an attacker does not know PR, the attacker’s
strategy will be based on some historical experience that they have with cyber
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Fig. 7. This figure shows an analysis that can be made to compare two protections
and the values of the protections relative to each other.

protections. We believe that different attack policies and associated derivative risk
assessment quantities should be explored more extensively in the cybersecurity and
critical IP protection domains.
Knowledge of PR before and after certain protections are added or improved can

help answer fundamental questions such as: “How much better protected is my IP?”;
“What is the right level of investment in its protection?”; “What is the cost/benefit
analysis for adding more protections?”
To illustrate the possible comparisons between protections that can be made, we

have performed a worst-case analysis (for the protector of the IP) based on the data
shown in Figure 1 for two different protections. The analysis in Figure 1 assumes
that the attacker does not know the underlying POMDP attack graph model or
parameters and so expends much effort exploring the protection and attack space
(that is, the attacker does not employ the optimal attack policy). The resulting
probability distribution of time to defeat was previously shown in Figure 1.
Given the POMDP model structure and parameter values, we can compute the

probability distribution of the time to defeat assuming that the attacker knows
the optimal attack policy as specified by the POMDP attack graph structure and
parameters. With this additional information, the time to defeat the protection is
then two orders of magnitude smaller as the plot in the top left corner of Figure
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7 shows. We can repeat this analysis if another layer of protection is added, also
as shown in the top left corner of Figure 7. With 4 protections, successful attacks
were only found with probability 0.35 so that with probability 0.65 an attack will
be unsuccessful in any reasonable time.
The bottom two plots in Figure 7 compare the “open loop” and “closed loop”

benefit minus cost curves and associated stopping times for 3 protections in the
bottom left and for the 4 protection case on the right. Subsequent analysis is
discussed on the top right corner of the figure. The point is that even though
successful attacks are possible in both cases, we can discover the value of the added
protection in concrete, explicit and quantitative terms.
To explain this analysis, note that with 3 protections, the optimal policy for

an attacker is to attack for about 14.5 hours by which time the probability of a
successful attack is 1. Moreover, the expected time to achieve a successful attack
is 5.43 hours which results in an expected cost of 5.43x60 = $326 for a successful
attack and a benefit of about $30,000 (the decrease in IP value is negligible).
With 4 protections, the optimal policy is to attack for only about 11 hours with

a probability of success of only 0.35. The expected number of hours prior to the
11 hour stopping time is 2.5. With probability 0.65, the attacker will expend those
11 hours but fail. Therefore the expected cost is 2.5x60 + 11x0.65x60 =$579, and
expected benefit is only 0.35x30000 = $10,500.
It should be noted that the reason there is only a 0.35 probability of successfully

attacking the 4 protections is that we are using a bounded, fixed resource model
for the attacker. That is, the representational capacity and computing power of
the adversary are the same for 3 and 4 protections. With 4 protections, those
resources are not sufficient to conduct successful attacks more than 35% of the
time an attack is attempted. This is a resource limitation that arises intrinsically
when numerically computing optimal policies for POMDP’s, the details of which
are beyond the scope of this paper. (Briefly, the same sized approximation is used to
represent the probability distributions underlying both 3 and 4 protection POMDP
models.)
In any case, as a result, we can conclude that with 3 protections, the attacker’s

expected gain is $30,000 - $326 = $29,674 while with 4 protections, the attacker’s
gain is $10,500 - $579 = $9,921. Therefore, the added “insurance” of the 4th pro-
tection is to safe guard $29,674 - 9,921 = $19,953 of the IP value.

3. RELATED WORK

3.1 Cybersecurity Risk Assessment

The general subject of risk assessment is an established discipline with a long history
in both the military and commercial sectors [Bernstein 1998; Boehm 1991]. It is
especially mature in the financial and insurance industries where economic models
of risk can be based on accepted theory and large amounts of historical data are
available. However, the absence of a theoretical framework and actuarial-class data
about information assurance makes risk assessment, mitigation and management a
major challenge in the computer security domain today [Daniel Geer et al. 2003;
Cybenko 2006].
For example, previous metrics for cybersecurity risk assessment, such as they are
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presently known, have proven to be inadequate for a variety of reasons including
[Anderson and Schneier 2005; Sanders et al. 2006]:

(1) Most technical metrics are not quantitative: in many cases, metrics are associ-
ated with how closely organizations follow specified processes;

(2) Most metrics are lagging as opposed to leading indicators of performance: ex-
isting metrics are not useful for predictive uses;

(3) Metrics with different objectives are not integrated to provide a comprehensive
view: organizational, technical and operational security metrics have not been
successfully combined to provide overall security assessments;

(4) Metrics are not absolute: they measure quantities that may not be relevant to
specific missions and institutional goals;

(5) Metrics based on formal methods are powerful but not sufficient: they are
based on assumptions which are typically difficult or impossible to verify in
real operational settings.

By constrast, the QuERIES methodology produces business-relevant quantitative
metrics that address the above concerns.

4. SUMMARY

Consequences of the QuERIES approach include:

(1) Improved threat characterization including methodologies to obtain statistical
parameterizations of the global red team;

(2) A methodology for evaluating IP protection schemes during the design phase,
as well as when first fielded, with an ability to identify the weakest links, and
to perform a cost-benefit analysis for strengthening the protections most ap-
propriately;

(3) A predictive methodology for the evaluation of protection schemes over time
which allows tracking the evolution of the dynamic protector-attacker game
theory model and quantifies the impact of the attacker’s learning curve on
protection effectiveness;

(4) The ability to link these quantitative risk assessments to an organization’s
strategic objectives and business plan via an economic model.

In other words, the QuERIES methodology can be used to rigorously determine,
for the first time, appropriate investment levels and strategies for the protection
of intellectual property in complex systems. As a result, it can have significant
and immediate impact on the protection of critical IP, including weapons systems
designs, chip designs, complex computer software and databases containing personal
and financial information.
We have performed initial testing of QuERIES in small-scale, but realistic, sce-

narios with positive results that suggest the methodology can significantly improve
risk assessments in complex systems that are under attack by rational and capable
adversaries. Software, hardware and data critical to national security and indus-
trial competitiveness are examples of such systems and consequently we believe
that QuERIES has wide applicability within the DoD and private sectors.
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