
The Impact of Code Complexity
on Static Analysis Results

James Walden, Adam Messer
 Northern Kentucky University

July 29, 2008

Outline

1. Research Objective

2. Test Cases

3. Metrics

4. Results

5. Analysis

Research Objective

Goal: Identify effects of code complexity on
static analysis results.

 Precision vs Scalability Tradeoff:
Increasing precision takes more time,

 decreasing size of code that can be
 analyzed in an acceptable amount of time.

Selected Prior Work:
– [Zitser, Lippmann, Leek 2004]
– [Kratkiewicz, Lippmann 2005]
– SAMATE

Study Needs

A static analysis tool
– Fortify Source Code Analyzer 4.5.0

A vulnerability type that is reliably identified
– Format string

Metrics
– Static analysis quality
– Code complexity

Test cases
– Vulnerable and fixed source code samples

Metrics

Static Analysis Metrics
– Detection rate
– False positive rate

Code Metrics
– Source Lines of Code (SLOC)
– Cyclomatic Complexity

Test Cases

35 format string vulnerabilities
– Selected randomly from NVD.
– Open source C/C++ code that compiles on Linux.
– Each case has two versions of the code

• One version has a format string vulnerability.
• Other version is same program with vulnerability fixed.

Examples
• wu-ftpd
• screen
• stunnel
• gpg

• hylafax

• exim
• dhcpd
• squid
• Kerberos 5

• cdrtools

• gnats
• cvs
• socat
• ethereal

• openvpn

Results

Detections
– 22 of 35 (63%) flaws detected by SCA 4.5.

Detections by Complexity
– Divided samples into 5 complexity bins.
– No significant difference between SLOC and CC.

Discrimination:
– Measure of how often analyzer passes fixed test

cases when it also passes vulnerable case.
– Results almost identical to detection results since
– Only one false positive from 35 fixed samples.

Detections by Complexity Class
%Detections by Complexity Class

loc loc

loc

loc

loc

CC
CC

CC

CC

CC
0

0.2

0.4

0.6

0.8

1

Very Small
(<5K)

Small (5K-
25K)

Medium (25K-
50K)

Large (50K-
100K)

Very Large
(>100K)

Complexity

%
D

e
te

c
ti

o
n

s

4> 25,0004> 100,000Very Large

610,000 – 25,000650,000 – 100,000Large

55000 – 10,000725,000 – 50,000Medium

101000 – 500095000 – 25,000Small

10< 10009< 5000Very Small

SamplesCyclomaticSamplesLines of CodeClass

Why do static analysis detection rates
decrease with complexity?

Hypothesis 1: Tool designers make tradeoffs
between precision and scalability, reducing the
depth of analysis to handle larger programs in a
reasonable amount of time.

Hypothesis 2: Software changes as it grows more
complex, with increasing use of custom libraries
such as the Apache Portable Runtime, which are
not included in the rulesets of tools.

Problem: How do we measure the relative effect of
each hypothesis? Are there alternative hypotheses?

Characteristics of Large Software

1. More complex control + data flow.

2. Participation of multiple developers.

3. Use of a broader set of language features.

4. Increased use of custom libraries.

Future Work

• How do static analysis results change with
time? What happens after we remove all
of the bugs that can be detected?

• How does code size affect the number of
vulnerabilities in a program over time?
How does churn affect this?

