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Research Objective

Goal: Identify effects of code complexity on 
static analysis results.

   Precision vs Scalability Tradeoff:
Increasing precision takes more time,

           decreasing size of code that can be
           analyzed in an acceptable amount of time.

Selected Prior Work:
– [Zitser, Lippmann, Leek 2004]
– [Kratkiewicz, Lippmann 2005]
– SAMATE



Study Needs

A static analysis tool
– Fortify Source Code Analyzer 4.5.0

A vulnerability type that is reliably identified
– Format string

Metrics
– Static analysis quality
– Code complexity

Test cases
– Vulnerable and fixed source code samples



Metrics

Static Analysis Metrics
– Detection rate
– False positive rate

Code Metrics
– Source Lines of Code (SLOC)
– Cyclomatic Complexity



Test Cases

35 format string vulnerabilities 
– Selected randomly from NVD.
– Open source C/C++ code that compiles on Linux.
– Each case has two versions of the code

• One version has a format string vulnerability.
• Other version is same program with vulnerability fixed.

Examples
• wu-ftpd
• screen
• stunnel
• gpg

• hylafax

• exim
• dhcpd
• squid
• Kerberos 5

• cdrtools

• gnats
• cvs
• socat
• ethereal

• openvpn



Results

Detections
– 22 of 35 (63%) flaws detected by SCA 4.5.

Detections by Complexity
– Divided samples into 5 complexity bins.
– No significant difference between SLOC and CC.

Discrimination:
– Measure of how often analyzer passes fixed test 

cases when it also passes vulnerable case.
– Results almost identical to detection results since
– Only one false positive from 35 fixed samples.
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Why do static analysis detection rates 
decrease with complexity?

Hypothesis 1: Tool designers make tradeoffs 
between precision and scalability, reducing the 
depth of analysis to handle larger programs in a 
reasonable amount of time.

Hypothesis 2: Software changes as it grows more 
complex, with increasing use of custom libraries 
such as the Apache Portable Runtime, which are 
not included in the rulesets of tools.

Problem: How do we measure the relative effect of 
each hypothesis?  Are there alternative hypotheses?



Characteristics of Large Software

1. More complex control + data flow.

2. Participation of multiple developers.

3. Use of a broader set of language features.

4. Increased use of custom libraries.



Future Work

• How do static analysis results change with 
time?  What happens after we remove all 
of the bugs that can be detected?

• How does code size affect the number of 
vulnerabilities in a program over time?  
How does churn affect this?


