
Does Software Quality Matter?

Sandy Clark, Matt Blaze, Jonathan Smith
University of Pennsylvania

Usenix Security: Metricon 2009

Bugs versus time
Mythical Man Month

Difficulty

Debugging
Debugging

Diffic
ulty

Security?

Current Software
Engineering Models

 The academic community focuses on measuring
quantity of vulnerabilities of software

 More bugs = More Attacks

Bugs are found

Patches are installed

Software Quality (security) Improves

A Puzzle for you

Even weak software enjoys a

Honeymoon

We are defining the Software Honeymoon as the period of
time
Between the first release of a program and the disclosure of
it’s first exploitable vulnerability.

IOW, Honeymoon = Learning curve

A Honeymoon?

Patterns we saw:

Trying to secure software is an
Arms Race

We are only beginning to think about individual pieces in the
steady state arms race.

 -Papers demonstrating how attackers respond to
countermeasures
 -Papers measuring the rates of infection
 -Every “Patch Tuesday” is followed by an “Exploit Wednesday”

But We know almost nothing about the pre-zero day cold war

 - Very little research into this area
 - We observe that the Honeymoon period is a time of relative
peace

The attacker’s curve

 The Honeymoon ends after attackers:

Research to discover
 Exploitable attack vectors
 Existence of vulnerabilities

Soundness of crypto, protocols, implementation, testing
Complexity is attacker’s friend here

 Availability of specs, source code, sample targets
 Difficulty of finding the vulnerabilities

Complexity is actually the enemy of the attacker here
Development
 Build and debug an exploit

 Operations
 Find and exploit targets

An Observation

Our usual question: “Can we measure how secure this
system is?”
 We analyze the intrinsic properties of the system

A different question: “Can we measure how long will it
be before this system is first attacked?”

“What is the expected time to zero-day exploit”

We must model not only the intrinsic security of the
system, but the threat and behavior of attackers

 IOW, extrinsic properties are at least as
important as intrinsic properties

Security Metrics questions

Intrinsic security properties of software are a poor
predictor of when an attack will occur

Intrinsic security properties of software are a poor
indicator of how devastating an attack will be

Focus on intrinsic security properties leaves us
defenseless against new, innovative attacks

We are spending our attention and resources on the
wrong things.

Focus needs to be on extending the Honeymoon

Why this matters?

 The Arms Race Today

Improving the Extrinsic
Properties of Software

 Get a better idea of the length of the Honeymoon
period

 Develop ways to prolong it
 If your honeymoon is over, find ways to jump start

it.
 May mean completely changing our view of the

software life cycle - why?

New code is better than old code

Because, then you get a second
Honeymoon!

New code is better than old code,
even if it introduces
new vulnerabilities

